Padaatom berelektron banyak, orbital-orbital dengan nilai bilangan kuantum utama sama memiliki tingkat energi yang sedikit berbeda. Distribusi Elektron dalam Atom Jumlah orbital dalam setiap kulit dinyatakan dengan rumus n2 dan jumlah maksimum elektron yang dapat menempati setiap kulit dinyatakan dengan rumus 2n2.
Konfigurasi elektron adalah susunan penyebaran pengisian elektron-elektron dalam. Seperti yang telah dibahas dalam bab Struktur Atom, di dalam atom terdapat partikel subatomik neutron dan proton yang terdapat pada inti atom, dan elektron yang bergerak mengelilingi inti atom tersebut pada kulit-kulit elektron level-level energi yang tertentu. Lintasan peredaran elektron ini disebut juga kulit elektron. Kulit pertama yang terdekat dengan inti atom disebut kulit K, kemudian kulit kedua disebut kulit L, kulit ketiga disebut kulit M, dan seterusnya berurut berdasarkan alfabet sebagaimana kulit menjauhi inti atom. Kulit elektron ini juga dapat dinyatakan dengan bilangan kuantum utama n, dimulai dari 1 untuk kulit K, 2 untuk kulit L, dan seterusnya. Semakin besar nilai n, semakin jauh kulit elektron dari inti atom dan semakin besar energi elektron yang beredar di kulit terkait. Elektron-elektron akan mengisi kulit-kulit elektron pada atom dimulai dari kulit K yang merupakan level energi terendah. Setiap kulit elektron hanya dapat terisi sejumlah tertentu elektron. Jumlah maksimum elektron yang dapat terisi pada kulit elektron ke-n adalah 2n2. Namun, jumlah maksimum elektron pada kulit terluar dari suatu atom adalah 8. Lebih jelasnya, perhatikan ilustrasi pada Gambar 1 dan Tabel 1. Gambar 1. Ilustrasi konfigurasi elektron atom Li, B, O, Ne, Na, dan K berdasarkan kulit elektron Sumber Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. Untuk atom unsur golongan transisi, konfigurasi elektron nya tidak dapat ditentukan dengan metode penentuan berdasarkan kulit elektron untuk atom unsur golongan utama seperti di atas. Penentuan konfigurasi elektron atom unsur golongan transisi didasarkan pada orbital atom. Setiap orbital dalam atom akan ditandai dengan satu set nilai bilangan kuantum utama n, bilangan kuantum azimuth l, dan bilangan kuantum magnetik m yang khusus. Lalu, setiap orbital maksimum terisi 2 elektron, yang masing-masing memiliki bilangan kuantum spin s tersendiri. Keempat bilangan kuantum tersebut digunakan untuk men-deskripsi’-kan energi elektron, sebagaimana seperti alamat’ elektron dalam sebuah atom untuk menemukan keberadaan elektron dalam atom tersebut. Bilangan kuantum utama n mendeskripsikan ukuran dan tingkat energi orbital. Nilai n yang diperbolehkan adalah bilangan bulat positif. Bilangan kuantum azimuth l mendeskripsikan bentuk orbital. Nilai l yang diperbolehkan adalah bilangan bulat dari 0 hingga n−1. Bilangan kuantum magnetik m mendeskripsikan orientasi orbital. Nilai m yang diperbolehkan adalah bilangan bulat dari −l hingga +l. Bilangan kuantum spin s mendeskripsikan arah spin elektron dalam orbital. Nilai s yang diperbolehkan adalah +½ atau−½. Aturan penentuan konfigurasi elektron berdasarkan orbital 1. Asas Aufbau Elektron menempati orbital-orbital dimulai dari tingkat energi yang terendah, dimulai dari 1s, 2s, 2p, dan seterusnya seperti urutan subkulit yang terlihat pada Gambar 2. Gambar 2. Urutan tingkat energi subkulit Sumber Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. 2. Asas larangan Pauli Tidak ada dua elektron dalam satu atom yang memiliki keempat bilangan kuantum yang sama. Setiap orbital maksimum diisi oleh 2 elektron yang memiliki spin yang berlawanan. 3. Kaidah Hund Jika ada orbital dengan tingkat energi yang sama, konfigurasi elektron dengan energi terendah adalah dengan jumlah elektron tak berpasangan dengan spin paralel yang paling banyak. Gambar 3. Diagram orbital dan konfigurasi elektron berdasarkan orbital dari 10 unsur pertama Sumber Gilbert, Thomas al. 2012. Chemistry The Science in Context 3rd edition. New York W. W. Norton & Company, Inc. Contoh Soal Konfigurasi Elektron Tentukan konfigurasi elektron dan jumlah elektron dalam setiap kulit elektron atom unsur berikut. a. Ni Z = 28 b. SrZ = 38 Jawab Ni Z = 28 1s2 2s2 2p6 3s2 3p6 4s2 3d8 atau [Ar] 4s2 3d8; K = 2 ; L = 8 ; M = 16 ; N = 2 Sr Z = 38 1s2 2s2 2p6 3s2 3p6 4s2 3d104p6 5s2atau [Kr] 5s2; K = 2 ; L = 8 ; M = 18 ; N = 8 ; O = 2 Berdasarkan eksperimen, terdapat anomali konfigurasi elektron dari aturan-aturan di atas. Subkulit d memiliki tendensi untuk terisi setengah penuh atau terisi penuh. Contohnya, Cr Z = 24 [Ar] 4s1 3d5 lebih stabil dibanding [Ar] 4s2 3d4 ; dan juga Cu Z = 29 [Ar] 4s1 3d10 lebih stabil dibanding [Ar] 4s2 3d9. Untuk ion monoatomik seperti Na+, K+, Ca2+, S2-, Br– dapat ditentukan dari konfigurasi elektron atom netralnya terlebih dahulu. Pada kation ion bermuatan positif monoatomik Ax+ yang bermuatan x+, sebanyak x elektron dilepas dikurangi dari kulit elektron terluar atom netral A. Pada anion ion bermuatan negatif monoatomik By– yang bermuatan y-, sebanyak y elektron ditangkap ditambahkan pada orbital level energi terendah yang masih belum penuh oleh elektron. Referensi Konfigurasi Elektron – Cracolice, Mark S. & Peters, Edward I. 2011. Introductory Chemistry An Active Learning Approach 4th edition. California Brooks/Cole, Cengage Learning. – Earl, Bryan & Wilford, Doug. 2014. Cambridge IGCSE Chemistry 3rd edition. London Hodder Education. – Gilbert, Thomas N. et al. 2012. Chemistry The Science in Context 3rd edition. New York W. W. Norton & Company, Inc. – McMurry, John. et al. of General, Organic, and Biological Chemistry 7th edition. Illinois Pearson Education, Inc. – Petrucci, Ralph H. et al. 2011. General Chemistry Principles and Modern Applications 10th edition. Toronto Pearson Canada Inc. – Purba, Michael. 2006. Kimia 1A untuk SMA Kelas X. Jakarta Erlangga. – Purba, Michael. 2006. Kimia 2A untuk SMA Kelas XI. Jakarta Erlangga. – Silberberg, Martin S. 2009. Chemistry The Molecular Nature of Matter and Change5th edition. New York McGraw Hill – Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. Judul artikel Konfigurasi Elektron Kontributor Nirwan Susianto, Alumni Kimia UI Materi lainnya Struktur Atom Reaksi Reduksi Oksidasi Stoikiometri
Lesson- 2 : A brief explanation on the form and SS read and discuss the SS understand and are able to apply : Language Focus : use of Smiliarity, Comparison, explanation. Smiliarity, Comparison, Superlative Smiliarity, Comparison, Superlative Degrees SS do the tasks according to the Degrees.
Struktur Atom Atomic Structure adalah teori terhadap nukleus, di pusat atom, terdiri dari proton dan neutron. Mengorbit di sekitar nukleus adalah mekanika klasik seperti Hukum Newton dapat menjelaskan materi berukuran makro dengan akurat. Akan tetapi, hukum tersebut tidak mampu menjelaskan gejala yang ditimbulkan oleh materi berukuran mikro, seperti elektron, atom, atau molekul. Materi berukuran mikro hanya dapat dijelaskan dengan teori mekanika atom berdasarkan mekanika kuantum dirumuskan oleh Werner Heisenberg dan Erwin Schrodinger. Selain itu, sumbangan pemikiran terhadap teori ini diberikan juga oleh Paul Dirac, Max Born, dan teori atom mekanika kuantum dapat menjelaskan materi berskala mikro seperti elektron dalam atom sehingga penyusunan keberadaan elektron dalam atom dapat digambarkan melalui penulisan konfigurasi elektron dan diagram orbital. Bagaimanakah menuliskan konfigurasi elektron dan diagram orbital? Simak Materi berikut Teori Atom ModernTeori atom Bohr cukup berhasil dalam menjelaskan gejala spektrum atom hidrogen, bahkan dapat menentukan jari-jari atom hidrogen dan tingkat energi atom hidrogen pada keadaan dasar berdasarkan postulat momentum sudut dengan perkembangan ilmu pengetahuan, ditemukan fakta-fakta baru yang menunjukkan adanya kelemahan pada teori atom Bohr. Oleh karena itu, dikembangkan teori atom mekanika kuantumTeori Atom BohrSebagaimana telah Anda ketahui, teori atom Bohr didasarkan pada empat postulat sebagai dalam mengelilingi inti atom berada pada tingkattingkat energi atau orbit tertentu. Tingkat-tingkat energi ini dilambangkan dengan n=1, n=2, n=3, dan seterusnya. Bilangan bulat ini dinamakan bilangan kuantum perhatikan Gambar elektron berada pada tingkat energi tertentu, misalnya n=1, energi elektron tetap. Artinya, tidak ada energi yang diemisikan dipancarkan maupun dapat beralih dari satu tingkat energi ke tingkat energi lain disertai perubahan energi. Besarnya perubahan energi sesuai dengan persamaan Planck, E= energi elektron yang dibolehkan memiliki momentum sudut tertentu. Besar momentum sudut ini merupakan kelipatan dari h/2p atau nh/2p, n adalah bilangan kuantum dan h tetapan Peralihan Antartingkat EnergiModel atom Bohr dapat menerangkan spektrum atom hidrogen secara memuaskan. Menurut Bohr, cahaya akan diserap atau diemisikan dengan frekuensi tertentu sesuai persamaan Planck melalui peralihan elektron dari satu tingkat energi ke tingkat energi yang lain. Jika atom hidrogen menyerap energi dalam bentuk cahaya maka elektron akan beralih ke tingkat energi yang lebih jika atom hidrogen mengemisikan cahaya maka elektron akan beralih ke tingkat energi yang lebih rendah. Pada keadaan stabil, atom hidrogen memiliki energi terendah, yakni elektron berada pada tingkat energi dasar n=1. Jika elektron menghuni n>1, dinamakan keadaan tereksitasi. Keadaan tereksitasi ini tidak stabil dan terjadi jika atom hidrogen menyerap sejumlah hidrogen bohrAtom hidrogen pada keadaan tereksitasi tidak stabil sehingga energi yang diserap akan diemisikan kembali menghasilkan garis-garis spektrum perhatikan Gambar Kemudian, elektron akan turun ke tingkat energi yang lebih rendah. Nilai energi yang diserap atau diemisikan dalamtransisi elektron bergantung pada transisi antartingkat energi dirumuskan sebagai berikut b. Kelemahan Model Atom BohrGagasan Bohr tentang pergerakan elektron mengitari inti atom seperti sistem tata surya membuat teori atom Bohr mudah dipahami dan dapat diterima pada waktu itu. Akan tetapi, teori atom Bohr memiliki beberapa kelemahan, di antaranya sebagai atom ditempatkan dalam medan magnet maka akan terbentuk spektrum emisi yang rumit. Gejala ini disebut efek Zeeman perhatikan Gambar atom ditempatkan dalam medan listrik maka akan menghasilkan spektrum halus yang rumit. Gejala ini disebut efek fisika Jerman, Sommerfeld menyarankan, disamping orbit berbentuk lingkaran juga harus mencakup orbit berbentuk elips. Hasilnya, efek Zeeman dapat dijelaskan dengan model tersebut, tetapi model atom Bohr-Sommerfeld tidak mampu menjelaskan spektrum dari atom berelektron tahun setelah teori Bohr lahir, muncul gagasan de Broglie tentang dualisme materi, disusul Heisenberg tentang ketidakpastian posisi dan momentum partikel. Berdasarkan gagasan tersebut dan teori kuantum dari Planck, Schrodinger berhasil meletakkan dasar-dasar teori atom terkini, dinamakan teori atom mekanika Atom Mekanika KuantumKegagalan teori atom Bohr dalam menerangkan spektra atom hidrogen dalam medan magnet dan medan listrik, mendorong Erwin Schrodinger mengembangkan teori atom yang didasarkan pada prinsipprinsip mekanika atom mekanika kuantum mirip dengan yang diajukan oleh model atom Bohr, yaitu atom memiliki inti bermuatan positif dikelilingi oleh elektron-elektron bermuatan negatif. Perbedaannya terletak pada posisi elektron dalam mengelilingi inti atom dari inti menurut bohrMenurut Bohr, keberadaan elektron-elektron dalam mengelilingi inti atom berada dalam orbit dengan jarak tertentu dari inti atom, yang disebut jari-jari atom perhatikan Gambar diatas.Menurut teori atom mekanika kuantum, posisi elektron dalam mengelilingi inti atom tidak dapat diketahui secara pasti sesuai prinsip ketidakpastian Heisenberg. Oleh karena itu, kebolehjadian peluang terbesar ditemukannya elektron berada pada orbit atom tersebut. Dengan kata lain, orbital adalah daerah kebolehjadian terbesar ditemukannya elektron dalam model atom mekanika kuantum, gerakan elektron dalam mengelilingi inti atom memiliki sifat dualisme sebagaimana diajukan oleh de Broglie. Oleh karena gerakan elektron dalam mengelilingi inti memiliki sifat seperti gelombang maka persamaan gerak elektron dalam mengelilingi inti harus terkait dengan fungsi gelombang. Dengan kata lain, energi gerak kinetik elektron harus diungkapkan dalam bentuk persamaan fungsi SchrodingerPersamaan yang menyatakan gerakan elektron dalam mengelilingi inti atom dihubungkan dengan sifat dualisme materi yang diungkapkan dalam bentuk koordinat ini dikenal sebagai persamaan Schrodinger. Dari persamaan Schrodinger ini dihasilkan tiga bilangan kuantum, yaitu - bilangan kuantum utama n, - bilangan kuantum azimut A , - dan bilangan kuantum magnetikm.Ketiga bilangan kuantum ini merupakan bilangan bulat sederhana yang menunjukkan peluang adanya elektron di sekeliling inti atom. Penyelesaian persamaan Schrodinger menghasilkan tiga bilangan kuantum. Orbital diturunkan dari persamaan Schrodinger sehingga terdapat hubungan antara orbital dan ketiga bilangan kuantum Bilangan Kuantum Utama nBilangan kuantum utama n memiliki nilai n = 1, 2, 3, …, n. Bilangan kuantum ini menyatakan tingkat energi utama elektron dan sebagai ukuran kebolehjadian ditemukannya elektron dari inti atom. Jadi, bilangan kuantum utama serupa dengan tingkat-tingkat energi elektron atau orbit menurut teori atom Bohr. Bilangan kuantum utama merupakan fungsi jarak yang dihitung dari inti atom sebagai titik nol. Jadi, semakin besar nilai n, semakin jauh jaraknya dari karena peluang menemukan elektron dinyatakan dengan orbital maka dapat dikatakan bahwa orbital berada dalam tingkat-tingkat energi sesuai dengan bilangan kuantum utama n. Pada setiap tingkat energi terdapat satu atau lebih bentuk orbital. Semua bentuk orbital ini membentuk kulit shell. Kulit adalah kumpulan bentuk orbital dalam bilangan kuantum utama yang ini diberi lambang mulai dari K, L, M, N, …, dan seterusnya. Hubungan bilangan kuantum utama dengan lambang kulit sebagai Bilangan Kuantum Azimut A Bilangan kuantum azimut disebut juga bilangan kuantum momentum sudut, dilambangkan dengan A. Bilangan kuantum azimut menentukan bentuk orbital. Nilai bilangan kuantum azimut adalah A= n–1. Oleh karena nilai n merupakan bilangan bulat dan terkecil sama dengan satu maka harga A juga merupakan deret bilangan bulat 0, 1, 2, …, n–1. Jadi, untuk n=1 hanya ada satu harga bilangan kuantum azimut, yaitu 0. Berarti, pada kulit K n=1 hanya terdapat satu bentuk orbital. Untuk n=2 ada dua harga bilangan kuantum azimut, yaitu 0 dan 1. Artinya, pada kulit L n=2 terdapat dua bentuk orbital, yaitu orbital yang memiliki nilai A=0 dan orbital yang memiliki nilai A=1Pada pembahasan sebelumnya, dinyatakan bahwa bentuk-bentuk orbital yang memiliki bilangan kuantum utama sama membentuk kulit. Bentuk orbital dengan bilangan kuantum azimut sama dinamakan subkulit. Jadi, bilangan kuantum azimut dapat juga menunjukkan jumlah subkulit dalam setiap kulit. Masing-masing subkulit diberi lambang dengan s, p, d, f, …, dan seterusnya. Hubungan subkulit dengan lambangnya adalah sebagai berikutcontoh kuantum azimut c. Bilangan Kuantum Magnetik mBilangan kuantum magnetik disebut juga bilangan kuantum orientasi sebab bilangan kuantum ini menunjukkan orientasi arah orbital dalam ruang atau orientasi subkulit dalam kulit. Nilai bilangan kuantum magnetik berupa deret bilangan bulat dari –m melalui nol sampai +m. Untuk A=1, nilai m=0, ±l. Jadi, nilai bilangan kuantum magnetik untuk A=1 adalah –l melalui 0 sampai + kuantum magnetikSubkulit-s A =0 memiliki harga m=0, artinya subkulit-s hanya memiliki satu buah orbital. Oleh karena m=0, orbital-s tidak memiliki orientasi dalam ruang sehingga bentuk orbital-s dikukuhkan berupa bola yang A=1 memiliki nilai m= –1, 0, +1. Artinya, subkulit-p memiliki tiga buah orientasi dalam ruang 3 orbital, yaitu orientasi pada sumbu-x dinamakan orbital px , orientasi pada sumbu-y dinamakan orbital py , dan orientasi pada sumbu-z dinamakan orbital pz .Subkulit-d A=2 memiliki harga m= –2, –1, 0, +1, +2. Artinya, subkulit-d memiliki lima buah orientasi dalam ruang 5 orbital, yaitu pada bidang-xy dinamakan orbital dxy, pada bidang-xz dinamakan orbital dxz, pada bidang-yz dinamakan orbital dyz, pada sumbu x2 –y2 dinamakan orbital −2 2 dx y , dan orientasi pada sumbu z2 dinamakan orbital 2 dz .Contoh orientasi orbital dapat dilihat pada Gambar d. Bilangan Kuantum Spin sDi samping bilangan kuantum n, A , dan m, masih terdapat satu bilangan kuantum lain. Bilangan kuantum ini dinamakan bilangan kuantum spin, dilambangkan dengan s. Bilangan kuantum ini ditemukan dari hasil pengamatan radiasi uap perak yang dilewatkan melalui medan magnet, oleh Otto Stern dan W. medan magnet, berkas cahaya dari uap atom perak terurai menjadi dua berkas. Satu berkas membelok ke kutub utara magnet dan satu berkas lagi ke kutub selatan magnet perhatikan Gambar Berdasarkan pengamatan tersebut, disimpulkan bahwa atom-atom perak memiliki sifat magnet. Pengamatan terhadap atom-atom unsur lain, seperti atom Li, Na, Cu, dan Au selalu menghasilkan gejala yang tersebut memiliki jumlah elektron ganjil. Munculnya sifat magnet dari berkas uap atom disebabkan oleh spin atau putaran elektron pada porosnya. Berdasarkan percobaan Stern-Gerlach, dapat disimpulkan bahwa ada dua macam spin elektron yang berlawanan arah dan saling atom yang jumlah elektronnya ganjil, terdapat sebuah elektron yang spinnya tidak ada yang meniadakan. Akibatnya, atom tersebut memiliki medan elektron dinyatakan dengan bilangan kuantum spin. Bilangan kuantum ini memiliki dua harga yang berlawanan tanda, yaitu +½ dan –½ . Tanda + menunjukkan putaran searah jarum jam dan tanda – arah sebaliknya perhatikan Gambar Adapun harga ½ , menyatakan fraksi elektron. B. Bentuk OrbitalBentuk orbital ditentukan oleh bilangan kuantum azimut. Bilangan kuantum ini diperoleh dari suatu persamaan matematika yang mengandung trigonometri sinus dan cosinus. Akibatnya, bentuk orbital ditentukan oleh bentuk trigonometri dalam memiliki bilangan kuantum azimut, A= 0 dan m= 0. Oleh karena nilai m sesungguhnya suatu tetapan tidak mengandung trigonometri maka orbital-s tidak memiliki orientasi dalam ruang sehingga orbital-s ditetapkan berupa bola simetris di sekeliling bola menyatakan peluang terbesar ditemukannya elektron dalam orbital-s. Hal ini bukan berarti semua elektron dalam orbital-s berada di permukaan bola, tetapi pada permukaan bola itu peluangnya tertinggi ≈ 99,99%, sisanya boleh jadi tersebar di dalam bola, lihat Gambar sOrbital-pOrbital-p memiliki bilangan kuantum azimut, A= 1 dan m= 0, ±l. Oleh karena itu, orbital-p memiliki tiga orientasi dalam ruang sesuai dengan bilangan kuantum magnetiknya. Oleh karena nilai m sesungguhnya mengandung sinus maka bentuk orbital-p menyerupai bentuk sinus dalam ruang, seperti ditunjukkan pada Gambar orbital-p memiliki bentuk yang sama, tetapi berbeda dalam orientasinya. Orbital-px memiliki orientasi ruang pada sumbu-x, orbital-py memiliki orientasi pada sumbu-y, dan orbital-pz memiliki orientasi pada sumbu-z. Makna dari bentuk orbital-p adalah peluang terbesar ditemukannya elektron dalam ruang berada di sekitar sumbu x, y, dan z. Adapun pada bidang xy, xz, dan yz, peluangnya memiliki bilangan kuantum azimut A = 2 dan m = 0, ±1, ±2. Akibatnya, terdapat lima orbital-d yang melibatkan sumbu dan bidang, sesuai dengan jumlah bilangan kuantum magnetiknya. Orbital-d terdiri atas orbital- 2 dz , orbital- xz d , orbital- xy d , orbital- yz d , dan orbital- −2 2 dx y perhatikan Gambar dxy, dxz, dyz, dan −2 2 dx y memiliki bentuk yang sama, tetapi orientasi dalam ruang berbeda. Orientasi orbital-dxy berada dalam bidang xy, demikian juga orientasi orbital-orbital lainnya sesuai dengan tandanya. Orbital −2 2 dx y memiliki orientasi pada sumbu x dan sumbu y. Adapun orbital 2 dz memiliki bentuk berbeda dari keempat orbital yang orbital ini berada pada sumbu z dan terdapat “donat” kecil pada bidang-xy. Makna dari orbital-d adalah, pada daerah-daerah sesuai tanda dalam orbital xy, xz, yz, x2 –y2 , z2 menunjukkan peluang terbesar ditemukannya elektron, sedangkan pada simpul-simpul di luar bidang memiliki peluang paling kecil. Bentuk orbital-f dan yang lebih tinggi dapat dihitung secara matematika,tetapi sukar untuk digambarkan atau diungkapkan kebolehjadiannya sebagaimana orbital-s, p, dan d. Kesimpulan umum dari hasil penyelesaian persamaan Schrodinger dapat dirangkum sebagai berikut C. Konfigurasi Elektron Atom PolielektronPersamaan Schrodinger hanya dapat diterapkan secara eksak untuk atom berelektron tunggal seperti hidrogen, sedangkan pada atom berelektron banyak tidak dapat utama pada atom berelektron banyak adalah bertambahnya jumlah elektron sehingga menimbulkan tarikmenarik antara elektron-inti dan tolak-menolak antara elektron-elektron semakin rumit. Oleh karena itu, untuk atom berlektron banyak digunakan metode pendekatan berdasarkan hasil penelitian dan teori para Energi OrbitalPada atom berelektron banyak, setiap orbital ditandai oleh bilangan kuantum n, A, m, dan s. Bilangan kuantum ini memiliki arti sama dengan yang dibahas sebelumnya. Perbedaannya terletak pada jarak orbital dari inti. Pada atom hidrogen, setiap orbital dengan nilai bilangan kuantum utama sama memiliki tingkat-tingkat energi sama atau terdegenerasi. Misalnya, orbital 2s dan 2p memiliki tingkat energi yang sama. Demikian pula untuk orbital 3s, 3p, dan atom berelektron banyak, orbital-orbital dengan nilai bilangan kuantum utama sama memiliki tingkat energi yang sedikit berbeda. Misalnya, orbital 2s dan 2p memiliki tingkat energi berbeda, yaitu energi orbital 2p lebih tinggi. Perbedaan tingkat energi elektron pada atom hidrogen dan atom berelektron banyak ditunjukkan pada Gambar tingkat energiPerbedaan tingkat energi ini disebabkan oleh elektron yang berada pada kulit dalam menghalangi elektron-elektron pada kulit bagian luar. Sebagai contoh, elektron pada orbital 1s akan tolak-menolak dengan elektron pada orbital-2s dan 2p sehingga orbital-2s dan 2p tidak lagi sejajar terdegenerasi seperti pada atom ini menyebabkan elektron-elektron dalam orbital-2s memiliki peluang lebih besar ditemukan di dekat inti daripada orbital-2p orbital-2s lebih dekat dengan inti.Distribusi Elektron dalam AtomKulit terdiri atas subkulit yang berisi orbital-orbital dengan bilangan kuantum utama yang sama. Jumlah orbital dalam setiap kulit dinyatakan dengan rumus n2 dan jumlah maksimum elektron yang dapat menempati setiap kulit dinyatakan dengan rumus 2n²contoh distribusi elektronSubkulit terdiri atas orbital-orbital yang memiliki bilangan kuantum azimut yang sama. Jumlah orbital, dalam setiap subkulit dinyatakan dengan rumus 2 A + 1. Oleh karena setiap orbital maksimum dihuni oleh dua elektron maka jumlah elektron dalam setiap subkulit dinyatakan dengan rumus 22 A + 1.Aturan dalam Konfigurasi ElektronPenulisan konfigurasi elektron untuk atom berelektron banyak didasarkan pada aturan aufbau, aturan Hund, dan prinsip larangan Pauli. Untuk menentukan jumlah elektron dalam atom, perlu diketahui nomor atom unsur Aturan Membangun AufbauAturan pengisian elektron ke dalam orbital-orbital dikenal dengan prinsip Aufbau bahasa Jerman, artinya membangun. Menurut aturan ini, elektron dalam atom harus memiliki energi terendah, artinya elektron harus terlebih dahulu menghuni orbital dengan energi terendah lihat diagram tingkat energi orbital pada Gambar tingkat energi orbital aufbauTingkat energi elektron ditentukan oleh bilangan kuantum utama. Bilangan kuantum utama dengan n = 1 merupakan tingkat energi paling rendah, kemudian meningkat ke tingkat energi yang lebih tinggi, yaitu n = 2, n = 3, dan seterusnya. Jadi, urutan kenaikan tingkat energi elektron adalah n = 1 < n = 2 < n =3 < … < n = n.Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak terdegenerasi. Berdasarkan bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau A= 0. Jadi, urutan tingkat energinya adalah s < p < d < f < [ A = n–1].Terdapat aturan tambahan, yaitu aturan n+ A. Menurut aturan ini, untuk nilai n+ A sama, orbital yang memiliki energi lebih rendah adalah orbital dengan bilangan kuantum utama lebih kecil,contoh2p 2+1 = 3 < 3s 3+0 =3, 3p 3+1 = 4 < 4s 4+0 =4, dan nilai n+ A berbeda maka orbital yang memiliki energi lebih rendah adalah orbital dengan jumlah n+ A lebih kecil,contoh4s 4+0 = 4 < 3d 3+2 =5.Dengan mengacu pada aturan aufbau maka urutan kenaikan tingkat energi elektron-elektron dalam orbital adalah sebagai < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < …b. Aturan HundAturan Hund disusun berdasarkan data spektroskopi atom. Aturan ini menyatakan sebagai elektron ke dalam orbital-orbital yang tingkat energinya sama, misalnya ketiga orbital-p atau kelima orbital-d. Oleh karena itu, elektron-elektron tidak berpasangan sebelum semua orbital dihuni. Elektron-elektron yang menghuni orbital-orbital dengan tingkat energi sama, misalnya orbital pz , px , py . Oleh karena itu, energi paling rendah dicapai jika spin elektron Prinsip Larangan PauliMenurut Wolfgang Pauli, elektron-elektron tidak boleh memiliki empat bilangan kuantum yang sama. Aturan ini disebut Prinsip larangan Pauli. Makna dari larangan Pauli adalah jika elektron-elektron memiliki ketiga bilangan kuantum n, A, m samamaka elektron-elektron tersebut tidak boleh berada dalam orbital yang sama pada waktu bersamaan. Akibatnya, setiap orbital hanya dapat dihuni maksimum dua elektron dan arah spinnya harus konsekuensi dari larangan Pauli maka jumlah elektron yang dapat menghuni subkulit s, p, d, f, …, dan seterusnya berturut-turut adalah 2, 6, 10, 14, …, dan seterusnya. Hal ini sesuai dengan rumus 22 A + 1Penulisan Konfigurasi ElektronUntuk menuliskan konfigurasi elektron, bayangkan bahwa inti atom memiliki tingkat-tingkat energi, dan setiap tingkat energi memiliki orbitalorbital yang masih kosong. Kemudian, elektron-elektron ditempatkan pada orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi paling rendah diisi terlebih orbital dengan tingkat energi sama, seperti px , py , pz , diusahakan tidak berpasangan sesuai aturan Hund, tempatnya boleh di mana saja, px , py , atau pz . Jika setelah masing-masing orbital dihuni oleh satu elektron masih ada elektron lain maka elektron ditambahkan untuk membentuk pasangan dengan spin setiap orbital maksimum dihuni oleh dua elektron, sesuai aturan Pauli perhatikan Gambar Penulisan konfigurasi elektron dapat diringkas sebab dalam kimia yang penting adalah konfigurasi elektron pada kulit terluar atau elektron valensi. Contoh konfigurasi elektron atom natrium dapat ditulis sebagai11Na [Ne] 3s1 .Lambang [Ne] menggantikan penulisan konfigurasi elektron bagian dalam10Ne 1s2 2s2 2p6 .
Bilangankuantum utama tidak pernah bernilai nol. Kedudukan elektron di sekitar inti atom atau konfigurasi elektron di sekitar inti atom berpengaruh terhadap sifat fisis dan kimia. Kimia Kelas X Special Education Quiz - Quizizz Struktur atom, sistem periodik, dan ikatan kimia a. Kedudukan elektron dalam atom dinyatakan menggunakan aturan.
Konfigurasielektron menggambarkan penataan/susunan elektron dalam atom. Dalam menentukan konfigurasi elektron suatu atom, ada 3 aturan yang harus dipakai, yaitu Aturan Aufbau, Aturan Pauli, dan Aturan Hund. Oleh karena itu, dibuatlah makalah ini untuk membahas tentang struktur atom pada perkembangan teori model atom bohr dan mekanika
Pedomanyang digunakan dalam penulisan konfigurasi elektron adalah Azas Aufbau, Azas Larangan Pauli dan Kaidah Hund. konfigurasi elektron atom berelektron banyak dapat disingkat penulisannya dengan penulisan lambang unsur gas mulia yang sesuai. Pembuatan konfigurasi elektron dalam diagram orbital memenuhi aturan atau kaidah Hund
Orbitalorbital dalam satu subkulit mempunyai tingkat energi yang sama, sedangkan orbital-orbital dari subkulit berbeda, tetapi dari kulit yang sama mempunyai tingkat energi yang bermiripan. Susunan kulit, subkulit, dan orbital dalam suatu atom berelektron banyak disederhanakan seperti pada gambar berikut ini:
Padauraian sebelumnya, telah diketahui bahwa elektron menempati kulit atom berdasarkan tingkat energinya. Dengan demikian, pengisian elektron dimulai dari tingkat energi terendah menuju tingkat energi yang lebih tinggi.Prinsip ini dikenal dengan prinsip Aufbau.Keadaan ketika elektron mengisi kulit dengan energi terendah disebut keadaan dasar (ground state).
Analisis menurut teori Bohr energi atom hidrogen dihasilkan berdasarkan persamaan E = -A/n2 Dengan A = 2,18 x 10-18 J gunakan persamaan ini untuk mengetahui perubahan energi diantara kedua tingkat energi itu untuk selanjutnya digunakan untuk mengetahui bilangan kuantum n1 dan n2, perubahan energi dari tingkat kelima ketingkat kedua adalah E CariBlog Ini Sefirot Phantasma Soal Soal Kimia
Jikakita menggunakan rumus (n²) dalam Contoh 7.7, kita menemukan bahwa jumlah total orbital adalah 3² dan jumlah total elektron adalah 2 (3)² atau 18. Secara umum, jumlah elektron dalam suatu tingkat energi utama n adalah 2n². Latihan. Hitung jumlah total elektron yang dapat berada di tingkat dasar n = 4.
DiagramTingkat Energi Atom Berelektron Banyak Menurut Aturan Aufbau Adalah. Hitung jumlah total elektron yang dapat berada di tingkat dasar n = 4. σe =17 1s² 2s² 2p 6 3s² 3p 5. Diagram Tingkat Energi Atom Berelektron Banyak Menurut from iniaturannya.blogspot.com. 6c = 1s2 2s2 2p2. Model atom pada gambar di atas adalah model atom bohr
Tiapkulit atau setiap tingkat energi ditempati oleh sejumlah elektron. Jumlah elektron maksim u m yang dapat menempati tingkat energi harus memenuhi rumus Pauli = 2n 2. Untuk n =3 jumlah elektron maksimum 2 x 3 2 = 18. Untuk l = 1 (subkulit p), harga m hanya -1, 0, dan +1 sehingga tidak mungkin +2.
Jumlahorbital dalam suatu atom yang memiliki empat. kulit (n = 4) adalah . A. 8 D. 20. B. 12 E. 32. C. 16. 16. Jumlah maksimum elektron yang dapat menghuni. orbital dengan n = 3 adalah . A. 8 D. 18. C. 10. 17. Jumlah orbital dalam subkulit 2p adalah . A. 2 D. 10. B. 4 E. 14. C. 6. 18. Jumlah maksimum elektron yang dapat menghuni
Persamaanini bersama dengan prinsip ekslusi Pauli yang menyatakan bahwa elektron dan partikel Fermion lain tidak dapat memiliki keadaan kuantum yang sama (energi, orbital, spin dan lain-lain) merupakan dasar bagi penerapan teori kuantum modern dalam menjelaskan efek zeeman, atom berelektron banyak, osilator harmonis dan atom hidrogen.
26 Diagram tingkat energi orbital untuk atom hidrogen adalah . A. 1s < 2s < 2p < 3s < 3p < 3d < 4s. B. 1s = 2s < 2p = 3p < 3d = 4s. C. 1s < 2s = 2p < 3s = 3p = 3d < 4s. D. 1s < 2s < 2p < 3s < 3p < 3d = 4s. E. 1s = 2s = 2p = 3s = 3p = 3d = 4s. 27. Diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah .27 Diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah . A. 1s 2s 2p 3s 3p 4s 3d B. 1s = 2s 2p = 3p 3d = 4s C. 1s 2s = 2p 3s = 3p = 3d 4s D. 1s = 2s 2p = 3p 3d = 3f 4s E. 1s = 2s = 2p = 3s = 3p = 3d = 4s 28. Konfigurasi elektron yang tidak sesuai dengan aturan Hund adalah . A. 1s2 B. 1s2 2s2 2px1Dalamatom terdapat lintasan-lintasan tertentu yang disebut kulit atom, yaitu tempat bagi elektron-elektron untuk mengorbit inti tanpa disertai pemancaran atau penyerapan energi. Menurut Niels Bohr, kulit atom adalah orbit berbentuk lingkaran dengan jari-jari tertentu. Konfigurasi elektron merupakan susunan elektron dalam atom berdasarkan Om7TYOi.