Padaatom berelektron banyak, orbital-orbital dengan nilai bilangan kuantum utama sama memiliki tingkat energi yang sedikit berbeda. Distribusi Elektron dalam Atom Jumlah orbital dalam setiap kulit dinyatakan dengan rumus n2 dan jumlah maksimum elektron yang dapat menempati setiap kulit dinyatakan dengan rumus 2n2.
Konfigurasi elektron adalah susunan penyebaran pengisian elektron-elektron dalam. Seperti yang telah dibahas dalam bab Struktur Atom, di dalam atom terdapat partikel subatomik neutron dan proton yang terdapat pada inti atom, dan elektron yang bergerak mengelilingi inti atom tersebut pada kulit-kulit elektron level-level energi yang tertentu. Lintasan peredaran elektron ini disebut juga kulit elektron. Kulit pertama yang terdekat dengan inti atom disebut kulit K, kemudian kulit kedua disebut kulit L, kulit ketiga disebut kulit M, dan seterusnya berurut berdasarkan alfabet sebagaimana kulit menjauhi inti atom. Kulit elektron ini juga dapat dinyatakan dengan bilangan kuantum utama n, dimulai dari 1 untuk kulit K, 2 untuk kulit L, dan seterusnya. Semakin besar nilai n, semakin jauh kulit elektron dari inti atom dan semakin besar energi elektron yang beredar di kulit terkait. Elektron-elektron akan mengisi kulit-kulit elektron pada atom dimulai dari kulit K yang merupakan level energi terendah. Setiap kulit elektron hanya dapat terisi sejumlah tertentu elektron. Jumlah maksimum elektron yang dapat terisi pada kulit elektron ke-n adalah 2n2. Namun, jumlah maksimum elektron pada kulit terluar dari suatu atom adalah 8. Lebih jelasnya, perhatikan ilustrasi pada Gambar 1 dan Tabel 1. Gambar 1. Ilustrasi konfigurasi elektron atom Li, B, O, Ne, Na, dan K berdasarkan kulit elektron Sumber Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. Untuk atom unsur golongan transisi, konfigurasi elektron nya tidak dapat ditentukan dengan metode penentuan berdasarkan kulit elektron untuk atom unsur golongan utama seperti di atas. Penentuan konfigurasi elektron atom unsur golongan transisi didasarkan pada orbital atom. Setiap orbital dalam atom akan ditandai dengan satu set nilai bilangan kuantum utama n, bilangan kuantum azimuth l, dan bilangan kuantum magnetik m yang khusus. Lalu, setiap orbital maksimum terisi 2 elektron, yang masing-masing memiliki bilangan kuantum spin s tersendiri. Keempat bilangan kuantum tersebut digunakan untuk men-deskripsi’-kan energi elektron, sebagaimana seperti alamat’ elektron dalam sebuah atom untuk menemukan keberadaan elektron dalam atom tersebut. Bilangan kuantum utama n mendeskripsikan ukuran dan tingkat energi orbital. Nilai n yang diperbolehkan adalah bilangan bulat positif. Bilangan kuantum azimuth l mendeskripsikan bentuk orbital. Nilai l yang diperbolehkan adalah bilangan bulat dari 0 hingga n−1. Bilangan kuantum magnetik m mendeskripsikan orientasi orbital. Nilai m yang diperbolehkan adalah bilangan bulat dari −l hingga +l. Bilangan kuantum spin s mendeskripsikan arah spin elektron dalam orbital. Nilai s yang diperbolehkan adalah +½ atau−½. Aturan penentuan konfigurasi elektron berdasarkan orbital 1. Asas Aufbau Elektron menempati orbital-orbital dimulai dari tingkat energi yang terendah, dimulai dari 1s, 2s, 2p, dan seterusnya seperti urutan subkulit yang terlihat pada Gambar 2. Gambar 2. Urutan tingkat energi subkulit Sumber Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. 2. Asas larangan Pauli Tidak ada dua elektron dalam satu atom yang memiliki keempat bilangan kuantum yang sama. Setiap orbital maksimum diisi oleh 2 elektron yang memiliki spin yang berlawanan. 3. Kaidah Hund Jika ada orbital dengan tingkat energi yang sama, konfigurasi elektron dengan energi terendah adalah dengan jumlah elektron tak berpasangan dengan spin paralel yang paling banyak. Gambar 3. Diagram orbital dan konfigurasi elektron berdasarkan orbital dari 10 unsur pertama Sumber Gilbert, Thomas al. 2012. Chemistry The Science in Context 3rd edition. New York W. W. Norton & Company, Inc. Contoh Soal Konfigurasi Elektron Tentukan konfigurasi elektron dan jumlah elektron dalam setiap kulit elektron atom unsur berikut. a. Ni Z = 28 b. SrZ = 38 Jawab Ni Z = 28 1s2 2s2 2p6 3s2 3p6 4s2 3d8 atau [Ar] 4s2 3d8; K = 2 ; L = 8 ; M = 16 ; N = 2 Sr Z = 38 1s2 2s2 2p6 3s2 3p6 4s2 3d104p6 5s2atau [Kr] 5s2; K = 2 ; L = 8 ; M = 18 ; N = 8 ; O = 2 Berdasarkan eksperimen, terdapat anomali konfigurasi elektron dari aturan-aturan di atas. Subkulit d memiliki tendensi untuk terisi setengah penuh atau terisi penuh. Contohnya, Cr Z = 24 [Ar] 4s1 3d5 lebih stabil dibanding [Ar] 4s2 3d4 ; dan juga Cu Z = 29 [Ar] 4s1 3d10 lebih stabil dibanding [Ar] 4s2 3d9. Untuk ion monoatomik seperti Na+, K+, Ca2+, S2-, Br– dapat ditentukan dari konfigurasi elektron atom netralnya terlebih dahulu. Pada kation ion bermuatan positif monoatomik Ax+ yang bermuatan x+, sebanyak x elektron dilepas dikurangi dari kulit elektron terluar atom netral A. Pada anion ion bermuatan negatif monoatomik By– yang bermuatan y-, sebanyak y elektron ditangkap ditambahkan pada orbital level energi terendah yang masih belum penuh oleh elektron. Referensi Konfigurasi Elektron – Cracolice, Mark S. & Peters, Edward I. 2011. Introductory Chemistry An Active Learning Approach 4th edition. California Brooks/Cole, Cengage Learning. – Earl, Bryan & Wilford, Doug. 2014. Cambridge IGCSE Chemistry 3rd edition. London Hodder Education. – Gilbert, Thomas N. et al. 2012. Chemistry The Science in Context 3rd edition. New York W. W. Norton & Company, Inc. – McMurry, John. et al. of General, Organic, and Biological Chemistry 7th edition. Illinois Pearson Education, Inc. – Petrucci, Ralph H. et al. 2011. General Chemistry Principles and Modern Applications 10th edition. Toronto Pearson Canada Inc. – Purba, Michael. 2006. Kimia 1A untuk SMA Kelas X. Jakarta Erlangga. – Purba, Michael. 2006. Kimia 2A untuk SMA Kelas XI. Jakarta Erlangga. – Silberberg, Martin S. 2009. Chemistry The Molecular Nature of Matter and Change5th edition. New York McGraw Hill – Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. Judul artikel Konfigurasi Elektron Kontributor Nirwan Susianto, Alumni Kimia UI Materi lainnya Struktur Atom Reaksi Reduksi Oksidasi Stoikiometri
Lesson- 2 : A brief explanation on the form and SS read and discuss the SS understand and are able to apply : Language Focus : use of Smiliarity, Comparison, explanation. Smiliarity, Comparison, Superlative Smiliarity, Comparison, Superlative Degrees SS do the tasks according to the Degrees.
Penulisan konfigurasi elektron untuk atom berelektron banyak didasarkan pada aturan aufbau, aturan Hund, dan prinsip larangan Pauli. Untuk menentukan jumlah elektron dalam atom, perlu diketahui nomor atom unsur bersangkutan.  Aturan Membangun Aufbau Aturan pengisian elektron ke dalam orbital-orbital dikenal dengan prinsip Aufbau bahasa Jerman, artinya membangun. Menurut aturan ini, elektron dalam atom harus memiliki energi terendah, artinya elektron harus terlebih dahulu menghuni orbital dengan energi terendah. Tingkat energi elektron ditentukan oleh bilangan kuantum utama. Bilangan kuantum utama dengan n = 1 merupakan tingkat energi paling rendah, kemudian meningkat ke tingkat energi yang lebih tinggi, yaitu n = 2, n = 3, dan seterusnya. Jadi, urutan kenaikan tingkat energi elektron adalah n = 1 < n = 2 < n =3 < … < n = n. Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak terdegenerasi. Berdasarkan bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau ℓ= 0. Jadi, urutan tingkat energinya adalah s < p < d < f < [ ℓ = n–1]. Terdapat aturan tambahan, yaitu aturan n+ℓ. Menurut aturan ini, untuk nilai n+ℓ sama, orbital yang memiliki energi lebih rendah adalah orbital dengan bilangan kuantum utama lebih kecil, contoh 2p 2+1 = 3 < 3s 3+0 =3, 3p 3+1 = 4 < 4s 4+0 =4, dan seterusnya. Jika nilai n+ℓ berbeda maka orbital yang memiliki energi lebih rendah adalah orbital dengan jumlah n+ℓ lebih kecil, contoh 4s 4+0 = 4 < 3d 3+2 =5. Dengan mengacu pada aturan aufbau maka urutan kenaikan tingkat energi elektron-elektron dalam orbital adalah sebagai berikut. 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < … 127  Aturan Hund Aturan Hund disusun berdasarkan data spektroskopi atom. Aturan ini menyatakan sebagai berikut. 1. Pengisian elektron ke dalam orbital-orbital yang tingkat energinya sama, misalnya ketiga orbital-p atau kelima orbital-d. Oleh karena itu, elektron- elektron tidak berpasangan sebelum semua orbital dihuni. 2. Elektron-elektron yang menghuni orbital-orbital dengan tingkat energi sama, misalnya orbital pz, px, py Oleh karena itu, energi paling rendah dicapai jika spin elektron searah.  Prinsip Larangan Pauli Menurut Wolfgang Pauli, elektron-elektron tidak boleh memiliki empat bilangan kuantum yang sama. Aturan ini disebut Prinsip larangan Pauli. Makna dari larangan Pauli adalah jika elektron-elektron memiliki ketiga bilangan kuantum n, ℓ, m sama maka elektron-elektron tersebut tidak boleh berada dalam orbital yang sama pada waktu bersamaan. Akibatnya, setiap orbital hanya dapat dihuni maksimum dua elektron dan arah spinnya harus berlawanan. Sebagai konsekuensi dari larangan Pauli maka jumlah elektron yang dapat menghuni subkulit s, p, d, f, …, dan seterusnya berturut-turut adalah 2, 6, 10, 14, ..., dan seterusnya. Hal ini sesuai dengan rumus 22 ℓ + 1. Pauli adalah seorang ahli teori. Menggunakan hasil observasi ilmuwan lain, dia menemukan spin elektron dan mengemukakan asas larangan Pauli. Hal ini membawanya memenangkan hadiah Nobel di bidang Fisika pada 1945. Lahir pada 1900, Pauli hidup sampai pada 1958 dan membuat penemuan terkenal pada usia 25 tahun. SumberChemistry The Molecular Science, 1997. Untuk menuliskan konfigurasi elektron, bayangkan bahwa inti atom memiliki tingkat-tingkat energi, dan setiap tingkat energi memiliki orbital-orbital yang masih kosong. Kemudian, elektron-elektron ditempatkan pada orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi paling rendah diisi terlebih dahulu. Pengisian orbital dengan tingkat energi sama, seperti px, py, pz diusahakan tidak berpasangan sesuai aturan Hund, tempatnya boleh di mana saja, px, py, atau pz. Jika setelah masing-masing orbital dihuni oleh satu elektron masih ada elektron lain maka elektron ditambahkan untuk membentuk pasangan dengan spin berlawanan. Dalam setiap orbital maksimum dihuni oleh dua elektron, sesuai aturan Pauli Prinsip aufbau elektron harus menghuni orbital atom dengan energi terendah dulu, yaitu 1s 2s 2p 3s 3p 4s … dan seterusnya. Prinsip Pauli setiap orbital maksimum dihuni oleh dua elektron dengan spin berlawanan. Prinsip Hund pengisian elektron dalam orbital yang tingkat energinya sama, tidak berpasangan dulu sebelum semua orbital dihuni dulu. Dengan demikian, konfigurasi elektron atom poliatomik dapat dituliskan sebagai berikut. 11Na = 1s2 2s2 2p6 3s1 11Na = [Ne] 3s1 12Mg = 1s2 2s2 2 p6 3s2 12Mg = [Ne] 3s2 13Al = 1s2 2s2 2 p6 3s2 3p1 13Al = [Ne] 3s2 3p1 14Si = 1s2 2s2 2 p6 3s2 3p2 14Si = [Ne] 3s2 3p2 15P = 1s2 2s2 2 p6 3s2 3p3 15P = [Ne] 3s2 3p3 16S = 1s2 2s2 2 p6 3s2 3p4 16S = [Ne] 3s2 3p4 17Cl = 1s2 2s2 2p6 3s2 3p5 17Cl = [Ne] 3s2 3p5 Beberapa konfigurasi elektron atom dengan nomor atom 1 sampai nomor atom 20 ditunjukkan pada tabel berikut. 128 Z Unsur Konfigurasi Z Unsur Konfigurasi 1. H 1s1 11. Na 1s2 2s2 2p6 3s1 2. He 1s2 12. Mg 1s2 2s2 2p6 3s2 3. Li 1s2 2s1 13. Al 1s2 2s2 2p6 3s2 3p1 4. Be 1s2 2s2 14. Si 1s2 2s2 2p6 3s2 3p2 5. B 1s2 2s2 2p1 15. P 1s2 2s2 2p6 3s2 3p3 6. C 1s2 2s2 2p2 16. S 1s2 2s2 2p6 3s2 3p4 7. N 1s2 2s2 2p3 17. Cl 1s2 2s2 2p6 3s2 3p5 8. O 1s2 2s2 2p4 18. Ar 1s2 2s2 2p6 3s2 3p6 9. F 1s2 2s2 2p5 19. K [Ar] 4s1 10. Ne 1s2 2s2 2p6 20 Ca [Ar] 4s2 129 Lampiran 2. Materi Pembelajaran Remedial NOMOR ATOM  Menyatakan jumlah proton dalam atom.  Untuk atom netral, jumlah proton = jumlah elektron nomor atom juga menyatakan jumlah elektron.  Diberi simbol huruf Z  Atom yang melepaskan elektron berubah menjadi ion positif, sebaliknya yang menerima elektron berubah menjadi ion negatif. Contoh 19K NOMOR MASSA  Menunjukkan jumlah proton dan neutron dalam inti atom.  Proton dan neutron sebagai partikel penyusun inti atom disebut Nukleon.  Jumlah nukleon dalam atom suatu unsur dinyatakan sebagai Nomor Massa diberi lambang huruf A, sehingga A = nomor massa = jumlah proton p + jumlah neutron n A = p + n = Z + n  Penulisan atom tunggal dilengkapi dengan nomor atom di sebelah kiri bawah dan nomor massa di sebelah kiri atas dari lambang atom tersebut. Notasi semacam ini disebut dengan Nuklida. X Z A Keterangan X = lambang atom A = nomor massa Z = nomor atom Contoh U 92 238 SUSUNAN ION  Suatu atom dapat kehilangan/melepaskan elektron atau mendapat/menerima elektron tambahan.  Atom yang kehilangan/melepaskan elektron, akan menjadi ion positif kation.  Atom yang mendapat/menerima elektron, akan menjadi ion negatif anion.  Dalam suatu Ion, yang berubah hanyalah jumlah elektron saja, sedangkan jumlah proton dan neutronnya tetap. Contoh Spesi Proton Elektron Neutron Atom Na 11 11 12 Ion Na 11 10 12 Ion Na 11 12 12 Rumus umum untuk menghitung jumlah proton, neutron dan elektron 1. Untuk nuklida atom netral X A Z p = Z e = Z n = A-Z 2. Untuk nuklida kation  y X A Z p = Z e = Z – +y n = A-Z 3. Untuk nuklida anion  y X A 130 e = Z – -y n = A - Z ISOTOP, ISOBAR DAN ISOTON Elektronelektron dalam mengelilingi inti atom berada pada tingkattingkat energi atau orbit tertentu. Tingkat-tingkat energi ini dilambangkan dengan n=1, n=2, n=3, dan seterusnya. Bilangan bulat ini dinamakan bilangan kuantum (perhatikan Gambar 1.1). Selama elektron berada pada tingkat energi tertentu, misalnya n=1, energi elektron tetap. ATOM BERELEKTRON BANYAK A. MODEL ATOM BOHR * Keunggulan Dapat menjelaskan adanya 1. Kestabilan atom 2. Spektrum garis pada atom hidrogen deret Lyman, Balmer, Paschen, Brackett, Pfund * Kelemahan Tidak dapat menjelaskan 1. Efek Zeeman yaitu, gejala tambahan garis-garis spektrum jika atom-atom tereksitasi diletakkan dalam medan magnet. 2. Spektrum garis yang dipancarkan oleh atom berelektron banyak. 3. Pada spektrum suatu atom, beberapa garis spektrum memiliki intensitas lebih besar dari garis spektrum yang lain. B. MODEL ATOM MEKANIKA KUANTUM * Dikembangkan oleh Erwin Schrodinger dan Werner Heisenberg * Dikenal dengan Teori Mekanika Kuantum 1. Bilangan kuantum utama n Menentukan besar energi total elektron Energi total elektron atom hidrogen E=− 13,6 n2 eV Energi total elektron ion He+, Li2+ E=− 13,6 ⋅ z 2 n2 z = nomor atom He + → z = 2 Li2+ → z = 3 - Energi total elektron banyak E=− 2. 13,6 ⋅ z ef 2 n2 z ef = nomor atom efektif Jumlah elektron maksimum pada orbit ke-n adalah 2n 2 jadi ∑ e = 2n2 Bilangan Kuantum Orbital/Azimuth Penemu Arnold Sommerfeld → orbit ellips menentukan besar momentum anguler/sudut orbital elektron l = n – 1 jadi l = 0, 1, 2, 3, ... besar momentum sudut L © SMA NEGERI 8 JAKARTA Halaman -1- h h = h 2π 2π h tetapan Planck l makin kecil → L makin kecil bentuk orbit semakin pipih. L = ll + 1 - l=2 l=0 l=1 inti l=3 3. Bilangan kuantum magnetik ml Menunjukkan arah dari momentum sudut orbital ml = − l , ..., 0, ... + l Banyaknya nilai yang diperbolehkan jumlah orbital ml = 2l + 1 - Arah momentum sudut dikuantisasi dengan acuan ke medan magnet luar kuantisasi ruang Lz L z = ml h Contoh l = 2 z 2h h 0 −h L= 22 + 1h = 6h 6h 6h 6h −2 h - 4. 6h Anomali efek Zeeman AEZ pengecualian gejala tambahan garis spektrum yang tidak sesuai dengan jumlah yang diperkirakan. Contoh garis pertama deret Balmer dari atom hidrogen yang menunjukkan sebuah struktur halus oleh Phipps dan Taylor Bilangan Kuantum Spin ms Menunjukkan arah perputaran elektron pada sumbunya Ada 2 nilai, ms = ± 1 2 - Pauli berhasil menjelaskan adanya AEZ penyebab → rotasi tersembunyi Goudsmit & Uhlenbeck → rotasi tersembunyi disebabkan oleh momentum sudut intrinsik momentum sudut spin Besar momentum sudut spin S S = ms ms + 1 h © SMA NEGERI 8 JAKARTA Halaman -2- - Arah vektor momentum sudut spin S z S z = ms h Nama kulit Bilangan kuantum utama n Nama subkulit Bilangan kuantum orbital l Banyak orbital ml = 2l + 1 Jumlah elektron l = 2 × m * K 1 s 0 1 L 2 p 1 3 M 3 d 2 5 N 4 f 3 7 O 5 g 4 9 2 6 10 14 18 KONFIGURASI ELEKTRON Yaitu susunan elektron-elektron dalam atom yang sesuai dengan tingkat energinya. Aturan-aturan 1. Prinsip Aufbau Elektron mengisi orbital dari tingkat energi yang paling rendah sampai yang paling tinggi. Contoh Atom K → z = 19, konfigurasi elektronnya 1s2 2s2 2p6 3s2 3p6 4s1 1s 2s 3s 4s 5s 6s 7s * 2p 3p 5p 5p 6p 3d 4d 5d 6d 4f 5f 2. Aturan Hund • Dalam orbital yang setingkat, elektron-elektron tidak boleh berpasangan sebelum seluruh orbital setingkat terisi oleh sebuah elektron. • Contoh tidak boleh 3. Larangan Pauli dalam satu atom tidak boleh ada elektron yang mempunyai keempat bilangan kuantum yang sama harganya. SPEKTRUM EMISI & ABSORPSI Adanya spektrum menunjukkan adanya tingkat energi. 1. Spektrum Emisi • Dihasilkan dari zat yang memancarkan gelombang elektromagnetik • Dapat diamati denan spektroskop • Ada 3 jenis a. spektrum garis - dihasilkan oleh gas-gas bertekanan rendah yang dipanaskan - terdiri dari garis-garis cahaya monokromatik dengan panjang gelombang tertentu yang merupakan karakteristik dari unsur yang menghasilkan spektrum tersebut © SMA NEGERI 8 JAKARTA Halaman -3- b. c. 2. * spektrum pita - dihasilkan oleh gas dalam keadaan molekuler Contoh gas H2, O2, N2 dan CO - spektrum yang dihasilkan berupa kelompok-kelompok garis yang sangat rapat sehingga membentuk pita-pita. spektrum kontinue - spektrum kontinue terdiri atas cahaya dengan semua panjang gelombang, walaupun dengan intensitas yang berbeda - dihasilkan oleh zat padat, zat cair dan gas yang berpijar Spektrum Absorpsi - terjadi karena penyerapan panjang gelombang tertentu oleh suatu zat terhadap radiasi gelombang elektromagnetik yang memiliki spektrum kontinue - terdiri dari sederetan garis-garis hitam pada spektrum kontinue - Contoh spektrum matahari sepintas spektrum matahari tampak seperti spektrum kontinue, tetapi jika dicermati akan tampak garis-garis gelap terang yang disebut garis-garis Fraunhofer. Hal ini disebabkan cahaya putih dari bagian inti matahari diserap oleh atom-atom atau molekul-molekul gas dalam atmosfer matahari maupun atmosfer bumi. ENERGI IONISASI DAN AFINITAS ELEKTRON Apabila suatu atom menerima energi dari luar yang cukup untuk mengeksitasi elektron melampaui tingkat energi tertinggi, maka elektron tersebut akan meninggalkan atom.  Energi ionisasi energi terendah yang dibutuhkan untuk melepaskan sebuah elektron dari ikatan atomnya +13,6 Contoh energi ionisasi atom hidrogen pada kulit ke-n adalah En = eV n2 Ø Energi ionisasi merupakan ukuran kestabilan konfigurasi elektron terluar dari suatu atom Ø Makin besar energi ionisasi, makin sukar atom tersebut untuk melepaskan elektron Ø Dalam satu periode dari kiri ke kanan energi ionisasinya makin besar Ø Dalam satu golongan dari atas ke bawah energi ionisasinya makin § § §  Jumlah elektron pada orbit terluar disebut ELEKTRON VALENSI Elektron valensi kurang dari 4 cenderung melepaskan elektron, sedangkan yang lebih dari 4 cenderung menerima elektron Atom-atom yang menangkap elektron membentuk Ion negatif disertai dengan pembebasan sejumlah energi AFINITAS ELEKTRON energi yang dibebaskan pada saat suatu atom menangkap sebuah elektron © SMA NEGERI 8 JAKARTA Halaman -4- MOLEKUL, ZAT PADAT PITA ENERGI A. MOLEKUL molekul terbentuk karena adanya gaya tarik-menarik antara 2 atom atau lebih gaya coulomb Ikatan molekul 1. Ikatan Ion - disebabkan oleh gaya coulomb, atom satu melepas satu elektron terluarnya dan yang lain menerima. - Contoh NaCl + + Na Cl + Na+ + Cl− Na → Na + + e membutuhkan energi Cl + e → Cl− melepaskan energi 2. Ikatan Kovalen - ikatan yang terjadi di antara dua atom dengan memakai satu atau dua elektron bersama. - Contoh H2 H → H+ + e 3. H2 Ikatan Hidrogen - terjadi akibat gaya tarik-menarik elektrostatik kuat antara hidrogen pada satu molekul dengan atom N, O atau F dari molekul lain. B. ZAT PADAT Zat padat terbentuk karena antaratomnya terikat oleh ikatan - ionik garam padat - kovalen intan - Van der Waals H2O padat - hidrogen hidrogen padat - logam 1. Ikatan Van der Waals Ikatan yang terjadi karena gaya tarik-menarik antar dipol H2O dengan H2O, N2 padat, CH4 padat. © SMA NEGERI 8 JAKARTA Halaman -5- 2. Ikatan Logam Ikatan terjadi antara awan elektron dengan ion-ion positif C. PITA ENERGI Elektron-elektron yang mengelilingi inti atom memiliki energi. Bila atom-atom berdekatan, maka elektron-elektron pada atom mengalami pergeseran/perubahan energi. E E E 2s pita energi E 1s atom tunggal Banyak atom berdekatan Pita Energi sekumpulan energi-energi yang besarnya tidak jauh berbeda. Banyak elektron pada setiap pita energi adalah ∑ e = 22l + 1N Keterangan l = bilangan kuantum orbital 0, 1, 2, 3, ... N = banyaknya atom yang saling berdekatan Pita Valensi PV pita energi terakhir yang terisi penuh elektron Pita Konduksi PK pita energi yang terisi sebagian atau tidak terisi elektron Celah Energi CE selisih energi pada pita valensi dan konduksi Contoh Na11 N 2p 6N 2s 1s 2N 2N Pada Na 11 pita konduksi terisi sebagian oleh sebab itu elektron-elektron pada PK akan bergerak bebas yang memungkinkan Na sebagai konduktor yang baik. Ditinjau dari konduktivitas zat pada yang berkaitan dengan pita energi dibagi sebagai berikut 1. 2. Konduktor • PV penuh • CE sempit • PK sebagian Isolator • PV penuh • CE lebar • PK kosong © SMA NEGERI 8 JAKARTA Halaman -6- 3. Semikonduktor • PV penuh • CE sedang • PK kosong SEMIKONDUKTOR Si, Ge Berdasarkan kemurniannya, semikonduktor dibedakan menjadi 1. Intrinsik • Semikonduktor yang belum dikotori • Bersifat isolator pada suhu rendah • Bersifat konduktor pada suhu sedang 300 K 2. Ekstrinsik • Semikonduktor yang telah dikotori golongan IIIA, VA • Bersifat isolator pada suhu rendah • lebih bersifat konduktor jika dibanding intrinsik Ada dua macam semikonduktor Ekstrinsik, yaitu a. Semikonduktor ekstrinsik tipe N - dibuat dengan mengotori kristal Si IVA dengan atom golongan VAAs, Sb, P Si elektron bebas Si As Si Si - Atom-atom golongan VA As disebut atom donor menyumbangkan sebuah elektron bebas - Pembawa muatan mayoritas elektron - Pembawa muatan minoritas hole - Untuk menjadi konduktor hanya dibutuhkan sedikit energi ± 0,05 eV b. Semikonduktor ekstrinsik tipe P - dibuat dengan mengotori kristal Si IVA dengan atom golongan IIIBoron, Al, Ga, I, Tl Si Si B Si hole Si - Pembawa muatan mayoritas hole - Pembawa muatan minoritas elektron © SMA NEGERI 8 JAKARTA Halaman -7- Kegunaan semikonduktor 1. Thermistor Thermally Sensitive Resistor - thermometer hambat yang sangat peka - dasar kerja kenaikan suhu, hambat jenis semikonduktor turun sehingga kuat arus naik. 2. Penunda arus 3. Pengukur intensitas cahaya - semakin besar intensitas cahaya semakin banyak fotonnya sehingga semakin besar energi yang dibawa berkas cahaya itu. Hal ini menyebabkan penurunan hambat jenis sehingga menaikkan kuat arus listrik pada rangkaian. 4. Penyaring - energi foton sinar inframerah sesuai dengan celah energi germanium, sehingga apabila sinar putih dilewatkan pada kristal Ge, hanya sinar inframerah saja yang lolos sedangkan sinar-sinar yang lain diserap. SOAL-SOAL LATIHAN Atom Berelektron Banyak, Molekul, Zat Padat dan Pita Energi 1. Salah satu konsep atom menurut Dalton adalah ... a. molekul terdiri dari atom-atom b. massa keseluruhan atom berubah c. atom tidak bergabung dengan atom lainnya d. atom tidak dapat membentuk suatu molekul e. atom dapat dipecah-pecah lagi 2. Percobaan hamburan Rutherford menghasilkan kesimpulan ... a. atom adalah bagian terkecil dari unsur b. elektron adalah bagian atom yang bermuatan listrik negatif c. atom memiliki massa yang tersebar secara merata d. massa atom terpusat di suatu titik yang disebut inti e. elektron mengelilingi inti pada lintasan tertentu 3. Berikut ini beberapa kesamaan antara model atom Rutherford dan model atom Bohr, kecuali ... a. elektron berputar mengelilingi inti dengan membebaskan sejumlah energi b. elektron merupakan bagian atom yang bermuatan negatif c. atom berbentuk bola kosong dengan inti berada di tengah d. secara keseluruhan atom bersifat netral e. massa atom terpusat pada inti atom © SMA NEGERI 8 JAKARTA Halaman -8- 4. Salah satu model atom menurut Bohr adalah ... a. elektron bergerak dengan lintasan stasioner b. energi foton yang terpancar berbanding terbalik dengan f c. tidak memiliki momentum anguler d. atom merupakan bola pejal bermuatan positif e. atom tidak dapat dipecah-pecah lagi 5. Dalam postulat Bohr tentang momentum sudut, tersirat sifat gelombang elektron, panjang gelombang λ elektron yang bergerak dalam suatu orbit berjari-jari r memenuhi ... . n bilangan bulat a. r = nλ b. 2πr = nλ c. 2πr = n2λ λ d. r = n λ e. 2πr = 2 n 6. Menurut Bohr, elektron bergerak mengelilingi inti hanya pada lintasan tertentu dan besarnya momentum anguler elektron pada lintasan itu adalah ... a. berbanding terbalik dengan tetapan Planck b. berbanding lurus dengan tetapan Planck c. berbanding lurus dengan tetapan Rydberg d. berbanding terbalik dengan tetapan Rydberg e. berbanding terbalik dengan momentum linier 7. Sebuah atom akan memancarkan foton, apabila salah satu elektronnya ... . a. meninggalkan atom itu b. bertumbukan dengan elektron lainnya c. bertukar tingkat energi dengan elektron yang lain d. mengalami transisi ke tingkat energi yang lebih rendah e. mengalami transisi ke tingkat energi yang lebih tinggi © SMA NEGERI 8 JAKARTA Halaman -9- 8. Menurut teori atom Bohr, elektron bermassa 9 × 10−31 kg pada atom hidrogen dengan jari-jari 0,53 Å akan mempunyai kecepatan sebesar ... 1c 1 c a. d. 100 b. c. 9. 2 1 5 c 1 13 e. 1 137 c c Pemancaran sinar ultraviolet pada atom hidrogen terjadi apabila elektron berpindah dari ... . a. lintasan 1 ke lintasan 2 b. lintasan 2 ke lintasan 4 c. lintasan 3 ke lintasan 2 d. lintasan 4 ke lintasan 1 e. lintasan 4 ke lintasan 2 10. Berdasarkan model atom Bohr, tetapan Rydberg 1, m−1 jika terjadi transisi elektron dari lintasan n = 4 ke lintasan n = 2 dipancarkan foton dengan panjang gelombang ... . a. 1,82 × 10−7 b. 2,43 × 10−7 c. 3,65 × 10−7 d. 4,86 × 10−7 e. 7,29 × 10−7 11. Jika konstanta Rydberg 1, maka panjang gelombang terbesar dari deret Balmer adalah ... a. 1215 Å d. 6563 Å b. 4050 Å e. 8752 Å c. 5127 Å 12. Energi foton sinar tampak yang dipancarkan atom hidrogen ketika terjadi transisi elektron dari kulit ke-4 ke kulit ke-2 adalah ... a. 13,6 eV d. 2,55 eV b. 6,8 eV e. 54,4 eV c. 3,4 eV 13. Jika energi elektron atom hidrogen pada tingkat dasar 13,6 eV, maka energi yang diserap atom hidrogen agar elektronnya tereksitasi dari tingkat dasar ke lintasan kulit M adalah ... . a. 6,82 eV d. 10,20 eV b. 8,53 eV e. 12,09 eV c. 9,07 eV © SMA NEGERI 8 JAKARTA Halaman -10- 14. Bila elektron berpindah dari kulit M ke kulit K pada atom hidrogen dan R adalah tetapan Rydberg, maka panjang gelombang yang terjadi besarnya ... 8 a. 9R 9 b. 8R 17 c. 9R 9 d. 17R 1 e. R 15. Elektron atom hidrogen model Bohr mengelilingi intinya dengan bilangan kuantum n, bila energi ionisasi atom itu 1 kali energi ionisasi atom itu bernilai 16 dalam keadaan dasarnya, maka nilai n itu adalah ... . a. 2 b. 4 c. 8 d. 16 e. 32 16. Dalam model atom Bohr, elektron atom hidrogen yang mengorbit di sekitar inti atom membangkitkan kuat arus listrik rata-rata sebesar 0,8 mA pada suatu titik di orbit lintasannya, bila besar muatan elektron adalah 1, C maka jumlah putaran per sekon elektron tadi mengelilingi inti adalah ... a. 5 × 1012 b. 5 × 1013 c. 5 × 1015 d. 5 × 1016 e. 5 × 1018 17. Pada model atom Bohr, elektron atom hidrogen bergerak dengan orbit lingkaran dengan laju sebesar 2, m/s, jika e = 1, c dan me = 9, kg, maka besarnya arus pada orbit tersebut adalah ... . a. 1,06 pA b. 1,06 nA c. 1,06 µA d. 1,06 mA e. 1,06 A © SMA NEGERI 8 JAKARTA Halaman -11- 18. Diagram di bawah ini menunjukkan empat tingkatan energi suatu atom logam -5,2 . 10-19 J -9,0 . 10-19 J -16,4 . 10-19 J -24,6 . 10-19 J dari pengolahan data di atas, dengan mengendalikan transisi ke tingkatan energi yang lebih rendah selalu mungkin, dapat ditarik kesimpulan bahwa 1. ada 6 garis spektrum yang mungkin terjadi akibat transisi elektron 2. panjang gelombang minimum spektrum emisinya 3. panjang gelombang maksimum spektrum emisinya 4. adanya komponen spektrum emisi yang merupakan sinar tampak 19. Perbandingan frekuensi yang dipancarkan foton apabila elektron pindah dari orbit 2 ke orbit 1 dengan elektron yang pindah dari orbit 4 ke orbit 1 adalah ... a. 4 5 d. 2 4 b. 4 2 e. 1 4 c. 4 1 20. Atom A dapat mengadakan ikatan ionik dengan atom B jika ... a. atom A dan atom B saling melepaskan sejumlah elektron terluar yang sama jumlahnya b. atom A dan atom B merupakan atom dari suatu unsur yang sejenis c. atom A dan atom B memakai sejumlah elektron secara bersamasama d. atom A dan atom B membentuk dipol-dipol listrik e. atom A melepaskan sejumlah elektron dan atom B menerima elektron tersebut 21. Ikatan antaratom dengan pemakaian bersama sejumlah elektron pada kulit terluar atom-atom penyusun disebut ... . a. ikatan Van der Waals b. ikatan ionik c. ikatan kovalen d. ikatan logam e. ikatan hidrogen © SMA NEGERI 8 JAKARTA Halaman -12- 22. Semikonduktor tipe-n memiliki ... a. tingkat energi akseptor yang terletak di dekat pita konduksi b. tingkat energi donor yang terletak di dekat pita valensi c. tingkat energi akseptor yang terletak di dekat pita valensi d. tingkat energi donor yang terletak di dekat pita konduksi e. tingkat energi donor yang terletak di bawah pita valensi 23. Pengotoran doping pada bahan semikonduktor intrinsik dimaksudkan untuk ... a. menurunkan daya hantar listriknya b. menurunkan resistivitasnya c. menurunkan harga jualnya d. memperbesar celah energinya e. memperbesar hambatan jenisnya 24. Semikonduktor intrinsik pada OK bersifat sebagai isolator, karena ... . a. jarak celah energi antara pita valensi dan pita konduksi terlalu besar b. tidak ada tingkat energi akseptor pada pita energi c. tidak ada tingkat energi donor pada pita energi d. tidak cukup energi bagi elektron untuk pindah ke pita konduksi e. tidak ada pembawa muatan yang diberikan dari luar 25. Yang berfungsi sebagai pembawa muatan mayoritas dalam bahwa semikonduktor ekstrinsik tipe n adalah ... a. elektron b. proton c. hole d. elektron dan hole e. proton dan hole 26. Beberapa sifat sinar-X adalah ... 1. dapat menghitamkan film 2. mampu menembus keping kayu 3. bergerak menurut garis lurus 4. menimbulkan ion-ion dalam udara yang dilaluinya © SMA NEGERI 8 JAKARTA Halaman -13- bilangankuantum utama (n) - menentukan besar energi total elektron energi total elektron atom hidrogen 13,6 e=− ev n2 energi total elektron ion he+, li2+ 13,6 ⋅ z 2 e=− z = nomor atom n2 he+ → z = 2 li2+ → z = 3 - energi total elektron banyak 2 13,6 ⋅ zef e=− zef = nomor atom efektif n2 - jumlah elektron maksimum pada
Struktur Atom Atomic Structure adalah teori terhadap nukleus, di pusat atom, terdiri dari proton dan neutron. Mengorbit di sekitar nukleus adalah mekanika klasik seperti Hukum Newton dapat menjelaskan materi berukuran makro dengan akurat. Akan tetapi, hukum tersebut tidak mampu menjelaskan gejala yang ditimbulkan oleh materi berukuran mikro, seperti elektron, atom, atau molekul. Materi berukuran mikro hanya dapat dijelaskan dengan teori mekanika atom berdasarkan mekanika kuantum dirumuskan oleh Werner Heisenberg dan Erwin Schrodinger. Selain itu, sumbangan pemikiran terhadap teori ini diberikan juga oleh Paul Dirac, Max Born, dan teori atom mekanika kuantum dapat menjelaskan materi berskala mikro seperti elektron dalam atom sehingga penyusunan keberadaan elektron dalam atom dapat digambarkan melalui penulisan konfigurasi elektron dan diagram orbital. Bagaimanakah menuliskan konfigurasi elektron dan diagram orbital? Simak Materi berikut Teori Atom ModernTeori atom Bohr cukup berhasil dalam menjelaskan gejala spektrum atom hidrogen, bahkan dapat menentukan jari-jari atom hidrogen dan tingkat energi atom hidrogen pada keadaan dasar berdasarkan postulat momentum sudut dengan perkembangan ilmu pengetahuan, ditemukan fakta-fakta baru yang menunjukkan adanya kelemahan pada teori atom Bohr. Oleh karena itu, dikembangkan teori atom mekanika kuantumTeori Atom BohrSebagaimana telah Anda ketahui, teori atom Bohr didasarkan pada empat postulat sebagai dalam mengelilingi inti atom berada pada tingkattingkat energi atau orbit tertentu. Tingkat-tingkat energi ini dilambangkan dengan n=1, n=2, n=3, dan seterusnya. Bilangan bulat ini dinamakan bilangan kuantum perhatikan Gambar elektron berada pada tingkat energi tertentu, misalnya n=1, energi elektron tetap. Artinya, tidak ada energi yang diemisikan dipancarkan maupun dapat beralih dari satu tingkat energi ke tingkat energi lain disertai perubahan energi. Besarnya perubahan energi sesuai dengan persamaan Planck, E= energi elektron yang dibolehkan memiliki momentum sudut tertentu. Besar momentum sudut ini merupakan kelipatan dari h/2p atau nh/2p, n adalah bilangan kuantum dan h tetapan Peralihan Antartingkat EnergiModel atom Bohr dapat menerangkan spektrum atom hidrogen secara memuaskan. Menurut Bohr, cahaya akan diserap atau diemisikan dengan frekuensi tertentu sesuai persamaan Planck melalui peralihan elektron dari satu tingkat energi ke tingkat energi yang lain. Jika atom hidrogen menyerap energi dalam bentuk cahaya maka elektron akan beralih ke tingkat energi yang lebih jika atom hidrogen mengemisikan cahaya maka elektron akan beralih ke tingkat energi yang lebih rendah. Pada keadaan stabil, atom hidrogen memiliki energi terendah, yakni elektron berada pada tingkat energi dasar n=1. Jika elektron menghuni n>1, dinamakan keadaan tereksitasi. Keadaan tereksitasi ini tidak stabil dan terjadi jika atom hidrogen menyerap sejumlah hidrogen bohrAtom hidrogen pada keadaan tereksitasi tidak stabil sehingga energi yang diserap akan diemisikan kembali menghasilkan garis-garis spektrum perhatikan Gambar Kemudian, elektron akan turun ke tingkat energi yang lebih rendah. Nilai energi yang diserap atau diemisikan dalamtransisi elektron bergantung pada transisi antartingkat energi dirumuskan sebagai berikut b. Kelemahan Model Atom BohrGagasan Bohr tentang pergerakan elektron mengitari inti atom seperti sistem tata surya membuat teori atom Bohr mudah dipahami dan dapat diterima pada waktu itu. Akan tetapi, teori atom Bohr memiliki beberapa kelemahan, di antaranya sebagai atom ditempatkan dalam medan magnet maka akan terbentuk spektrum emisi yang rumit. Gejala ini disebut efek Zeeman perhatikan Gambar atom ditempatkan dalam medan listrik maka akan menghasilkan spektrum halus yang rumit. Gejala ini disebut efek fisika Jerman, Sommerfeld menyarankan, disamping orbit berbentuk lingkaran juga harus mencakup orbit berbentuk elips. Hasilnya, efek Zeeman dapat dijelaskan dengan model tersebut, tetapi model atom Bohr-Sommerfeld tidak mampu menjelaskan spektrum dari atom berelektron tahun setelah teori Bohr lahir, muncul gagasan de Broglie tentang dualisme materi, disusul Heisenberg tentang ketidakpastian posisi dan momentum partikel. Berdasarkan gagasan tersebut dan teori kuantum dari Planck, Schrodinger berhasil meletakkan dasar-dasar teori atom terkini, dinamakan teori atom mekanika Atom Mekanika KuantumKegagalan teori atom Bohr dalam menerangkan spektra atom hidrogen dalam medan magnet dan medan listrik, mendorong Erwin Schrodinger mengembangkan teori atom yang didasarkan pada prinsipprinsip mekanika atom mekanika kuantum mirip dengan yang diajukan oleh model atom Bohr, yaitu atom memiliki inti bermuatan positif dikelilingi oleh elektron-elektron bermuatan negatif. Perbedaannya terletak pada posisi elektron dalam mengelilingi inti atom dari inti menurut bohrMenurut Bohr, keberadaan elektron-elektron dalam mengelilingi inti atom berada dalam orbit dengan jarak tertentu dari inti atom, yang disebut jari-jari atom perhatikan Gambar diatas.Menurut teori atom mekanika kuantum, posisi elektron dalam mengelilingi inti atom tidak dapat diketahui secara pasti sesuai prinsip ketidakpastian Heisenberg. Oleh karena itu, kebolehjadian peluang terbesar ditemukannya elektron berada pada orbit atom tersebut. Dengan kata lain, orbital adalah daerah kebolehjadian terbesar ditemukannya elektron dalam model atom mekanika kuantum, gerakan elektron dalam mengelilingi inti atom memiliki sifat dualisme sebagaimana diajukan oleh de Broglie. Oleh karena gerakan elektron dalam mengelilingi inti memiliki sifat seperti gelombang maka persamaan gerak elektron dalam mengelilingi inti harus terkait dengan fungsi gelombang. Dengan kata lain, energi gerak kinetik elektron harus diungkapkan dalam bentuk persamaan fungsi SchrodingerPersamaan yang menyatakan gerakan elektron dalam mengelilingi inti atom dihubungkan dengan sifat dualisme materi yang diungkapkan dalam bentuk koordinat ini dikenal sebagai persamaan Schrodinger. Dari persamaan Schrodinger ini dihasilkan tiga bilangan kuantum, yaitu - bilangan kuantum utama n, - bilangan kuantum azimut A , - dan bilangan kuantum magnetikm.Ketiga bilangan kuantum ini merupakan bilangan bulat sederhana yang menunjukkan peluang adanya elektron di sekeliling inti atom. Penyelesaian persamaan Schrodinger menghasilkan tiga bilangan kuantum. Orbital diturunkan dari persamaan Schrodinger sehingga terdapat hubungan antara orbital dan ketiga bilangan kuantum Bilangan Kuantum Utama nBilangan kuantum utama n memiliki nilai n = 1, 2, 3, …, n. Bilangan kuantum ini menyatakan tingkat energi utama elektron dan sebagai ukuran kebolehjadian ditemukannya elektron dari inti atom. Jadi, bilangan kuantum utama serupa dengan tingkat-tingkat energi elektron atau orbit menurut teori atom Bohr. Bilangan kuantum utama merupakan fungsi jarak yang dihitung dari inti atom sebagai titik nol. Jadi, semakin besar nilai n, semakin jauh jaraknya dari karena peluang menemukan elektron dinyatakan dengan orbital maka dapat dikatakan bahwa orbital berada dalam tingkat-tingkat energi sesuai dengan bilangan kuantum utama n. Pada setiap tingkat energi terdapat satu atau lebih bentuk orbital. Semua bentuk orbital ini membentuk kulit shell. Kulit adalah kumpulan bentuk orbital dalam bilangan kuantum utama yang ini diberi lambang mulai dari K, L, M, N, …, dan seterusnya. Hubungan bilangan kuantum utama dengan lambang kulit sebagai Bilangan Kuantum Azimut A Bilangan kuantum azimut disebut juga bilangan kuantum momentum sudut, dilambangkan dengan A. Bilangan kuantum azimut menentukan bentuk orbital. Nilai bilangan kuantum azimut adalah A= n–1. Oleh karena nilai n merupakan bilangan bulat dan terkecil sama dengan satu maka harga A juga merupakan deret bilangan bulat 0, 1, 2, …, n–1. Jadi, untuk n=1 hanya ada satu harga bilangan kuantum azimut, yaitu 0. Berarti, pada kulit K n=1 hanya terdapat satu bentuk orbital. Untuk n=2 ada dua harga bilangan kuantum azimut, yaitu 0 dan 1. Artinya, pada kulit L n=2 terdapat dua bentuk orbital, yaitu orbital yang memiliki nilai A=0 dan orbital yang memiliki nilai A=1Pada pembahasan sebelumnya, dinyatakan bahwa bentuk-bentuk orbital yang memiliki bilangan kuantum utama sama membentuk kulit. Bentuk orbital dengan bilangan kuantum azimut sama dinamakan subkulit. Jadi, bilangan kuantum azimut dapat juga menunjukkan jumlah subkulit dalam setiap kulit. Masing-masing subkulit diberi lambang dengan s, p, d, f, …, dan seterusnya. Hubungan subkulit dengan lambangnya adalah sebagai berikutcontoh kuantum azimut c. Bilangan Kuantum Magnetik mBilangan kuantum magnetik disebut juga bilangan kuantum orientasi sebab bilangan kuantum ini menunjukkan orientasi arah orbital dalam ruang atau orientasi subkulit dalam kulit. Nilai bilangan kuantum magnetik berupa deret bilangan bulat dari –m melalui nol sampai +m. Untuk A=1, nilai m=0, ±l. Jadi, nilai bilangan kuantum magnetik untuk A=1 adalah –l melalui 0 sampai + kuantum magnetikSubkulit-s A =0 memiliki harga m=0, artinya subkulit-s hanya memiliki satu buah orbital. Oleh karena m=0, orbital-s tidak memiliki orientasi dalam ruang sehingga bentuk orbital-s dikukuhkan berupa bola yang A=1 memiliki nilai m= –1, 0, +1. Artinya, subkulit-p memiliki tiga buah orientasi dalam ruang 3 orbital, yaitu orientasi pada sumbu-x dinamakan orbital px , orientasi pada sumbu-y dinamakan orbital py , dan orientasi pada sumbu-z dinamakan orbital pz .Subkulit-d A=2 memiliki harga m= –2, –1, 0, +1, +2. Artinya, subkulit-d memiliki lima buah orientasi dalam ruang 5 orbital, yaitu pada bidang-xy dinamakan orbital dxy, pada bidang-xz dinamakan orbital dxz, pada bidang-yz dinamakan orbital dyz, pada sumbu x2 –y2 dinamakan orbital −2 2 dx y , dan orientasi pada sumbu z2 dinamakan orbital 2 dz .Contoh orientasi orbital dapat dilihat pada Gambar d. Bilangan Kuantum Spin sDi samping bilangan kuantum n, A , dan m, masih terdapat satu bilangan kuantum lain. Bilangan kuantum ini dinamakan bilangan kuantum spin, dilambangkan dengan s. Bilangan kuantum ini ditemukan dari hasil pengamatan radiasi uap perak yang dilewatkan melalui medan magnet, oleh Otto Stern dan W. medan magnet, berkas cahaya dari uap atom perak terurai menjadi dua berkas. Satu berkas membelok ke kutub utara magnet dan satu berkas lagi ke kutub selatan magnet perhatikan Gambar Berdasarkan pengamatan tersebut, disimpulkan bahwa atom-atom perak memiliki sifat magnet. Pengamatan terhadap atom-atom unsur lain, seperti atom Li, Na, Cu, dan Au selalu menghasilkan gejala yang tersebut memiliki jumlah elektron ganjil. Munculnya sifat magnet dari berkas uap atom disebabkan oleh spin atau putaran elektron pada porosnya. Berdasarkan percobaan Stern-Gerlach, dapat disimpulkan bahwa ada dua macam spin elektron yang berlawanan arah dan saling atom yang jumlah elektronnya ganjil, terdapat sebuah elektron yang spinnya tidak ada yang meniadakan. Akibatnya, atom tersebut memiliki medan elektron dinyatakan dengan bilangan kuantum spin. Bilangan kuantum ini memiliki dua harga yang berlawanan tanda, yaitu +½ dan –½ . Tanda + menunjukkan putaran searah jarum jam dan tanda – arah sebaliknya perhatikan Gambar Adapun harga ½ , menyatakan fraksi elektron. B. Bentuk OrbitalBentuk orbital ditentukan oleh bilangan kuantum azimut. Bilangan kuantum ini diperoleh dari suatu persamaan matematika yang mengandung trigonometri sinus dan cosinus. Akibatnya, bentuk orbital ditentukan oleh bentuk trigonometri dalam memiliki bilangan kuantum azimut, A= 0 dan m= 0. Oleh karena nilai m sesungguhnya suatu tetapan tidak mengandung trigonometri maka orbital-s tidak memiliki orientasi dalam ruang sehingga orbital-s ditetapkan berupa bola simetris di sekeliling bola menyatakan peluang terbesar ditemukannya elektron dalam orbital-s. Hal ini bukan berarti semua elektron dalam orbital-s berada di permukaan bola, tetapi pada permukaan bola itu peluangnya tertinggi ≈ 99,99%, sisanya boleh jadi tersebar di dalam bola, lihat Gambar sOrbital-pOrbital-p memiliki bilangan kuantum azimut, A= 1 dan m= 0, ±l. Oleh karena itu, orbital-p memiliki tiga orientasi dalam ruang sesuai dengan bilangan kuantum magnetiknya. Oleh karena nilai m sesungguhnya mengandung sinus maka bentuk orbital-p menyerupai bentuk sinus dalam ruang, seperti ditunjukkan pada Gambar orbital-p memiliki bentuk yang sama, tetapi berbeda dalam orientasinya. Orbital-px memiliki orientasi ruang pada sumbu-x, orbital-py memiliki orientasi pada sumbu-y, dan orbital-pz memiliki orientasi pada sumbu-z. Makna dari bentuk orbital-p adalah peluang terbesar ditemukannya elektron dalam ruang berada di sekitar sumbu x, y, dan z. Adapun pada bidang xy, xz, dan yz, peluangnya memiliki bilangan kuantum azimut A = 2 dan m = 0, ±1, ±2. Akibatnya, terdapat lima orbital-d yang melibatkan sumbu dan bidang, sesuai dengan jumlah bilangan kuantum magnetiknya. Orbital-d terdiri atas orbital- 2 dz , orbital- xz d , orbital- xy d , orbital- yz d , dan orbital- −2 2 dx y perhatikan Gambar dxy, dxz, dyz, dan −2 2 dx y memiliki bentuk yang sama, tetapi orientasi dalam ruang berbeda. Orientasi orbital-dxy berada dalam bidang xy, demikian juga orientasi orbital-orbital lainnya sesuai dengan tandanya. Orbital −2 2 dx y memiliki orientasi pada sumbu x dan sumbu y. Adapun orbital 2 dz memiliki bentuk berbeda dari keempat orbital yang orbital ini berada pada sumbu z dan terdapat “donat” kecil pada bidang-xy. Makna dari orbital-d adalah, pada daerah-daerah sesuai tanda dalam orbital xy, xz, yz, x2 –y2 , z2 menunjukkan peluang terbesar ditemukannya elektron, sedangkan pada simpul-simpul di luar bidang memiliki peluang paling kecil. Bentuk orbital-f dan yang lebih tinggi dapat dihitung secara matematika,tetapi sukar untuk digambarkan atau diungkapkan kebolehjadiannya sebagaimana orbital-s, p, dan d. Kesimpulan umum dari hasil penyelesaian persamaan Schrodinger dapat dirangkum sebagai berikut C. Konfigurasi Elektron Atom PolielektronPersamaan Schrodinger hanya dapat diterapkan secara eksak untuk atom berelektron tunggal seperti hidrogen, sedangkan pada atom berelektron banyak tidak dapat utama pada atom berelektron banyak adalah bertambahnya jumlah elektron sehingga menimbulkan tarikmenarik antara elektron-inti dan tolak-menolak antara elektron-elektron semakin rumit. Oleh karena itu, untuk atom berlektron banyak digunakan metode pendekatan berdasarkan hasil penelitian dan teori para Energi OrbitalPada atom berelektron banyak, setiap orbital ditandai oleh bilangan kuantum n, A, m, dan s. Bilangan kuantum ini memiliki arti sama dengan yang dibahas sebelumnya. Perbedaannya terletak pada jarak orbital dari inti. Pada atom hidrogen, setiap orbital dengan nilai bilangan kuantum utama sama memiliki tingkat-tingkat energi sama atau terdegenerasi. Misalnya, orbital 2s dan 2p memiliki tingkat energi yang sama. Demikian pula untuk orbital 3s, 3p, dan atom berelektron banyak, orbital-orbital dengan nilai bilangan kuantum utama sama memiliki tingkat energi yang sedikit berbeda. Misalnya, orbital 2s dan 2p memiliki tingkat energi berbeda, yaitu energi orbital 2p lebih tinggi. Perbedaan tingkat energi elektron pada atom hidrogen dan atom berelektron banyak ditunjukkan pada Gambar tingkat energiPerbedaan tingkat energi ini disebabkan oleh elektron yang berada pada kulit dalam menghalangi elektron-elektron pada kulit bagian luar. Sebagai contoh, elektron pada orbital 1s akan tolak-menolak dengan elektron pada orbital-2s dan 2p sehingga orbital-2s dan 2p tidak lagi sejajar terdegenerasi seperti pada atom ini menyebabkan elektron-elektron dalam orbital-2s memiliki peluang lebih besar ditemukan di dekat inti daripada orbital-2p orbital-2s lebih dekat dengan inti.Distribusi Elektron dalam AtomKulit terdiri atas subkulit yang berisi orbital-orbital dengan bilangan kuantum utama yang sama. Jumlah orbital dalam setiap kulit dinyatakan dengan rumus n2 dan jumlah maksimum elektron yang dapat menempati setiap kulit dinyatakan dengan rumus 2n²contoh distribusi elektronSubkulit terdiri atas orbital-orbital yang memiliki bilangan kuantum azimut yang sama. Jumlah orbital, dalam setiap subkulit dinyatakan dengan rumus 2 A + 1. Oleh karena setiap orbital maksimum dihuni oleh dua elektron maka jumlah elektron dalam setiap subkulit dinyatakan dengan rumus 22 A + 1.Aturan dalam Konfigurasi ElektronPenulisan konfigurasi elektron untuk atom berelektron banyak didasarkan pada aturan aufbau, aturan Hund, dan prinsip larangan Pauli. Untuk menentukan jumlah elektron dalam atom, perlu diketahui nomor atom unsur Aturan Membangun AufbauAturan pengisian elektron ke dalam orbital-orbital dikenal dengan prinsip Aufbau bahasa Jerman, artinya membangun. Menurut aturan ini, elektron dalam atom harus memiliki energi terendah, artinya elektron harus terlebih dahulu menghuni orbital dengan energi terendah lihat diagram tingkat energi orbital pada Gambar tingkat energi orbital aufbauTingkat energi elektron ditentukan oleh bilangan kuantum utama. Bilangan kuantum utama dengan n = 1 merupakan tingkat energi paling rendah, kemudian meningkat ke tingkat energi yang lebih tinggi, yaitu n = 2, n = 3, dan seterusnya. Jadi, urutan kenaikan tingkat energi elektron adalah n = 1 < n = 2 < n =3 < … < n = n.Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak terdegenerasi. Berdasarkan bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau A= 0. Jadi, urutan tingkat energinya adalah s < p < d < f < [ A = n–1].Terdapat aturan tambahan, yaitu aturan n+ A. Menurut aturan ini, untuk nilai n+ A sama, orbital yang memiliki energi lebih rendah adalah orbital dengan bilangan kuantum utama lebih kecil,contoh2p 2+1 = 3 < 3s 3+0 =3, 3p 3+1 = 4 < 4s 4+0 =4, dan nilai n+ A berbeda maka orbital yang memiliki energi lebih rendah adalah orbital dengan jumlah n+ A lebih kecil,contoh4s 4+0 = 4 < 3d 3+2 =5.Dengan mengacu pada aturan aufbau maka urutan kenaikan tingkat energi elektron-elektron dalam orbital adalah sebagai < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < …b. Aturan HundAturan Hund disusun berdasarkan data spektroskopi atom. Aturan ini menyatakan sebagai elektron ke dalam orbital-orbital yang tingkat energinya sama, misalnya ketiga orbital-p atau kelima orbital-d. Oleh karena itu, elektron-elektron tidak berpasangan sebelum semua orbital dihuni. Elektron-elektron yang menghuni orbital-orbital dengan tingkat energi sama, misalnya orbital pz , px , py . Oleh karena itu, energi paling rendah dicapai jika spin elektron Prinsip Larangan PauliMenurut Wolfgang Pauli, elektron-elektron tidak boleh memiliki empat bilangan kuantum yang sama. Aturan ini disebut Prinsip larangan Pauli. Makna dari larangan Pauli adalah jika elektron-elektron memiliki ketiga bilangan kuantum n, A, m samamaka elektron-elektron tersebut tidak boleh berada dalam orbital yang sama pada waktu bersamaan. Akibatnya, setiap orbital hanya dapat dihuni maksimum dua elektron dan arah spinnya harus konsekuensi dari larangan Pauli maka jumlah elektron yang dapat menghuni subkulit s, p, d, f, …, dan seterusnya berturut-turut adalah 2, 6, 10, 14, …, dan seterusnya. Hal ini sesuai dengan rumus 22 A + 1Penulisan Konfigurasi ElektronUntuk menuliskan konfigurasi elektron, bayangkan bahwa inti atom memiliki tingkat-tingkat energi, dan setiap tingkat energi memiliki orbitalorbital yang masih kosong. Kemudian, elektron-elektron ditempatkan pada orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi paling rendah diisi terlebih orbital dengan tingkat energi sama, seperti px , py , pz , diusahakan tidak berpasangan sesuai aturan Hund, tempatnya boleh di mana saja, px , py , atau pz . Jika setelah masing-masing orbital dihuni oleh satu elektron masih ada elektron lain maka elektron ditambahkan untuk membentuk pasangan dengan spin setiap orbital maksimum dihuni oleh dua elektron, sesuai aturan Pauli perhatikan Gambar Penulisan konfigurasi elektron dapat diringkas sebab dalam kimia yang penting adalah konfigurasi elektron pada kulit terluar atau elektron valensi. Contoh konfigurasi elektron atom natrium dapat ditulis sebagai11Na [Ne] 3s1 .Lambang [Ne] menggantikan penulisan konfigurasi elektron bagian dalam10Ne 1s2 2s2 2p6 .

Bilangankuantum utama tidak pernah bernilai nol. Kedudukan elektron di sekitar inti atom atau konfigurasi elektron di sekitar inti atom berpengaruh terhadap sifat fisis dan kimia. Kimia Kelas X Special Education Quiz - Quizizz Struktur atom, sistem periodik, dan ikatan kimia a. Kedudukan elektron dalam atom dinyatakan menggunakan aturan.

Konfigurasielektron menggambarkan penataan/susunan elektron dalam atom. Dalam menentukan konfigurasi elektron suatu atom, ada 3 aturan yang harus dipakai, yaitu Aturan Aufbau, Aturan Pauli, dan Aturan Hund. Oleh karena itu, dibuatlah makalah ini untuk membahas tentang struktur atom pada perkembangan teori model atom bohr dan mekanika
Pedomanyang digunakan dalam penulisan konfigurasi elektron adalah Azas Aufbau, Azas Larangan Pauli dan Kaidah Hund. konfigurasi elektron atom berelektron banyak dapat disingkat penulisannya dengan penulisan lambang unsur gas mulia yang sesuai. Pembuatan konfigurasi elektron dalam diagram orbital memenuhi aturan atau kaidah Hund
Orbitalorbital dalam satu subkulit mempunyai tingkat energi yang sama, sedangkan orbital-orbital dari subkulit berbeda, tetapi dari kulit yang sama mempunyai tingkat energi yang bermiripan. Susunan kulit, subkulit, dan orbital dalam suatu atom berelektron banyak disederhanakan seperti pada gambar berikut ini:
Padauraian sebelumnya, telah diketahui bahwa elektron menempati kulit atom berdasarkan tingkat energinya. Dengan demikian, pengisian elektron dimulai dari tingkat energi terendah menuju tingkat energi yang lebih tinggi.Prinsip ini dikenal dengan prinsip Aufbau.Keadaan ketika elektron mengisi kulit dengan energi terendah disebut keadaan dasar (ground state). Analisis menurut teori Bohr energi atom hidrogen dihasilkan berdasarkan persamaan E = -A/n2 Dengan A = 2,18 x 10-18 J gunakan persamaan ini untuk mengetahui perubahan energi diantara kedua tingkat energi itu untuk selanjutnya digunakan untuk mengetahui bilangan kuantum n1 dan n2, perubahan energi dari tingkat kelima ketingkat kedua adalah E
\n\n \n diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah
CariBlog Ini Sefirot Phantasma Soal Soal Kimia Jikakita menggunakan rumus (n²) dalam Contoh 7.7, kita menemukan bahwa jumlah total orbital adalah 3² dan jumlah total elektron adalah 2 (3)² atau 18. Secara umum, jumlah elektron dalam suatu tingkat energi utama n adalah 2n². Latihan. Hitung jumlah total elektron yang dapat berada di tingkat dasar n = 4.
DiagramTingkat Energi Atom Berelektron Banyak Menurut Aturan Aufbau Adalah. Hitung jumlah total elektron yang dapat berada di tingkat dasar n = 4. σe =17 1s² 2s² 2p 6 3s² 3p 5. Diagram Tingkat Energi Atom Berelektron Banyak Menurut from iniaturannya.blogspot.com. 6c = 1s2 2s2 2p2. Model atom pada gambar di atas adalah model atom bohr
Tiapkulit atau setiap tingkat energi ditempati oleh sejumlah elektron. Jumlah elektron maksim u m yang dapat menempati tingkat energi harus memenuhi rumus Pauli = 2n 2. Untuk n =3 jumlah elektron maksimum 2 x 3 2 = 18. Untuk l = 1 (subkulit p), harga m hanya -1, 0, dan +1 sehingga tidak mungkin +2. Jumlahorbital dalam suatu atom yang memiliki empat. kulit (n = 4) adalah . A. 8 D. 20. B. 12 E. 32. C. 16. 16. Jumlah maksimum elektron yang dapat menghuni. orbital dengan n = 3 adalah . A. 8 D. 18. C. 10. 17. Jumlah orbital dalam subkulit 2p adalah . A. 2 D. 10. B. 4 E. 14. C. 6. 18. Jumlah maksimum elektron yang dapat menghuni
Persamaanini bersama dengan prinsip ekslusi Pauli yang menyatakan bahwa elektron dan partikel Fermion lain tidak dapat memiliki keadaan kuantum yang sama (energi, orbital, spin dan lain-lain) merupakan dasar bagi penerapan teori kuantum modern dalam menjelaskan efek zeeman, atom berelektron banyak, osilator harmonis dan atom hidrogen.
26 Diagram tingkat energi orbital untuk atom hidrogen adalah . A. 1s < 2s < 2p < 3s < 3p < 3d < 4s. B. 1s = 2s < 2p = 3p < 3d = 4s. C. 1s < 2s = 2p < 3s = 3p = 3d < 4s. D. 1s < 2s < 2p < 3s < 3p < 3d = 4s. E. 1s = 2s = 2p = 3s = 3p = 3d = 4s. 27. Diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah .
27 Diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah . A. 1s 2s 2p 3s 3p 4s 3d B. 1s = 2s 2p = 3p 3d = 4s C. 1s 2s = 2p 3s = 3p = 3d 4s D. 1s = 2s 2p = 3p 3d = 3f 4s E. 1s = 2s = 2p = 3s = 3p = 3d = 4s 28. Konfigurasi elektron yang tidak sesuai dengan aturan Hund adalah . A. 1s2 B. 1s2 2s2 2px1
Dalamatom terdapat lintasan-lintasan tertentu yang disebut kulit atom, yaitu tempat bagi elektron-elektron untuk mengorbit inti tanpa disertai pemancaran atau penyerapan energi. Menurut Niels Bohr, kulit atom adalah orbit berbentuk lingkaran dengan jari-jari tertentu. Konfigurasi elektron merupakan susunan elektron dalam atom berdasarkan
Om7TYOi.